Fix #4 and another small bug in the dataset viewer
Kohaku Hub - Self-hosted HuggingFace Alternative
🚀 Active Development - Alpha Release Ready
DEMO Site (testing only, no guarantee on data integrity): https://hub.kohaku-lab.org
Self-hosted HuggingFace alternative with Git-like versioning for AI models and datasets. Compatible* with the official huggingface_hub Python client.
Status: Core features are complete and functional. Ready for testing and early adoption. APIs may evolve as we gather feedback.
*: May not perform exactly same behavior, if you meet any unexpected result, feel free to open issue.
![]() |
![]() |
|---|
Join our community: https://discord.gg/xWYrkyvJ2s
Features
KohakuHub (Model/Dataset Repository)
- HuggingFace Compatible - Drop-in replacement for
huggingface_hub,hfutils,transformers,diffusers - External Source Fallback - Browse HuggingFace (or other KohakuHub instances) when repos not found locally
- User External Tokens - Configure your own tokens for external sources (HuggingFace, etc.) with encrypted storage
- Native Git Clone - Standard Git operations (clone) with Git LFS support
- Git-Like Versioning - Branches, commits, tags via LakeFS
- S3 Storage - Works with MinIO, AWS S3, Cloudflare R2, etc.
- Large File Support - Git LFS protocol with automatic LFS pointers (>1MB files)
- Organizations - Multi-user namespaces with role-based access
- Quota Management - Storage quotas for users and organizations
- Web UI - Vue 3 interface with file browser, editor, commit history, Mermaid chart support
- Admin Portal - Comprehensive admin interface for user and repository management
- CLI Tool - Full-featured command-line interface with interactive TUI mode
- File Deduplication - Content-addressed storage by SHA256
- Trending & Likes - Repository popularity tracking
- Pure Python Git Server - No native dependencies, memory-efficient
KohakuBoard (Experiment Tracking) - Standalone Repository
Repository: https://github.com/KohakuBlueleaf/KohakuBoard
- Non-Blocking Logging - Background writer process, zero training overhead
- Rich Data Types - Scalars, images, videos, tables, histograms
- Hybrid Storage - Lance (columnar) + SQLite (row-oriented) for optimal performance
- Local-First - View experiments locally with
kobo open, no server required - See the KohakuBoard repository for full documentation
Quick Start
Deploy with Docker
git clone https://github.com/KohakuBlueleaf/KohakuHub.git
cd KohakuHub
# Option 1: Use interactive generator (recommended)
python scripts/generate_docker_compose.py
# Option 2: Manual configuration
# cp docker-compose.example.yml docker-compose.yml
# Edit docker-compose.yml to change credentials and secrets
# Build frontend and start services
npm install --prefix ./src/kohaku-hub-ui
npm install --prefix ./src/kohaku-hub-admin
npm run build --prefix ./src/kohaku-hub-ui
npm run build --prefix ./src/kohaku-hub-admin
docker-compose up -d --build
Access:
- Web UI & API: http://localhost:28080 (all traffic goes here)
- Web Admin Portal: http://localhost:28080/admin
- Use the value of KOHAKU_HUB_ADMIN_SECRET_TOKEN to login the portal
- API Docs (Swagger): http://localhost:48888/docs (direct access for development)
- LakeFS UI: http://localhost:28000
- MinIO Console: http://localhost:29000
LakeFS credentials: Auto-generated in docker/hub-meta/hub-api/credentials.env
Use with Python
import os
os.environ["HF_ENDPOINT"] = "http://localhost:28080"
os.environ["HF_TOKEN"] = "your_token_here"
from huggingface_hub import HfApi
api = HfApi()
# Create repo
api.create_repo("my-org/my-model", repo_type="model")
# Upload file
api.upload_file(
path_or_fileobj="model.safetensors",
path_in_repo="model.safetensors",
repo_id="my-org/my-model",
)
# Download file
api.hf_hub_download(repo_id="my-org/my-model", filename="model.safetensors")
Use with Transformers/Diffusers
import os
os.environ["HF_ENDPOINT"] = "http://localhost:28080"
os.environ["HF_TOKEN"] = "your_token_here" # needed for private repository
from diffusers import AutoencoderKL
vae = AutoencoderKL.from_pretrained("my-org/my-model")
CLI Tool
# Install
pip install -e .
# Interactive mode
kohub-cli interactive
# Command mode
kohub-cli auth login
kohub-cli repo create my-org/my-model --type model
kohub-cli repo list --type model
kohub-cli org create my-org
kohub-cli org member add my-org alice --role admin
See docs/CLI.md for complete CLI documentation.
Git Clone (Native Git Support)
# Clone repository (fast - only metadata and small files)
git clone http://localhost:28080/namespace/repo-name.git
# For private repositories, use token authentication
git clone http://username:your-token@localhost:28080/namespace/private-repo.git
# Install Git LFS for large files
cd repo-name
git lfs install
git lfs pull # Download large files (>1MB)
# (push operations coming soon)
How it works:
- Files <1MB: Included directly in Git pack (fast clone)
- Files >=1MB: Stored as LFS pointers (download via
git lfs pull) - Pure Python implementation (no pygit2/libgit2 dependencies)
- Automatic
.gitattributesand.lfsconfiggeneration - Memory-efficient (handles repos of any size)
See docs/Git.md for complete Git clone documentation and implementation details.
Architecture
Stack:
- FastAPI - HuggingFace-compatible API
- LakeFS - Git-like versioning (branches, commits, diffs) via REST API
- MinIO/S3 - Object storage with deduplication
- PostgreSQL/SQLite - Metadata database (synchronous with db.atomic() transactions)
- Vue 3 - Modern web interface
Implementation Notes:
- LakeFS: Uses REST API directly (lakefs_rest_client.py), providing pure async operations
- Database: Synchronous operations with Peewee ORM and
db.atomic()for transaction safety. Supports multi-worker deployment (4-8 workers) for horizontal scaling.
Data Flow:
- Small files (<10MB) → Base64 in commit payload
- Large files (>10MB) → Direct S3 upload via presigned URL (LFS protocol)
- All files linked to LakeFS commits for version control
- Downloads → 302 redirect to S3 presigned URL (no proxy)
See docs/API.md for detailed API documentation.
Configuration
Environment Variables (in docker-compose.yml):
# Application
KOHAKU_HUB_BASE_URL=http://localhost:28080
KOHAKU_HUB_LFS_THRESHOLD_BYTES=10000000 # 10MB
# S3 Storage
KOHAKU_HUB_S3_PUBLIC_ENDPOINT=http://localhost:29001
KOHAKU_HUB_S3_BUCKET=hub-storage
# Database
KOHAKU_HUB_DB_BACKEND=postgres
KOHAKU_HUB_DATABASE_URL=postgresql://hub:pass@postgres:5432/hubdb
# Auth
KOHAKU_HUB_SESSION_SECRET=change-me-in-production
KOHAKU_HUB_REQUIRE_EMAIL_VERIFICATION=false
# Admin Portal
KOHAKU_HUB_ADMIN_ENABLED=true
KOHAKU_HUB_ADMIN_SECRET_TOKEN=change-me-in-production
# External Tokens (for user-specific fallback tokens)
KOHAKU_HUB_DATABASE_KEY=$(openssl rand -hex 32) # Required for encryption
See config-example.toml for all options.
External Fallback Tokens
Users can provide their own tokens for external sources (e.g., HuggingFace) to access private repositories:
Via Web UI:
- Go to Settings → External Tokens
- Add your HuggingFace token
- Tokens are encrypted and stored securely
Via CLI:
kohub-cli settings user external-tokens add --url https://huggingface.co --token hf_abc123
Via Authorization Header (API/programmatic):
curl -H "Authorization: Bearer my_token|https://huggingface.co,hf_abc123" \
http://localhost:28080/api/models/org/model
How it works:
- User tokens override admin-configured tokens
- Tokens encrypted at rest using AES-256
- Works with session auth, API tokens, and anonymous requests
- Automatically used when repos not found locally
Development
Backend:
pip install -e .
# Single worker (development)
uvicorn kohakuhub.main:app --reload --port 48888
# Multi-worker (production-like testing)
uvicorn kohakuhub.main:app --host 0.0.0.0 --port 48888 --workers 4
# Note: Database uses db.atomic() for transaction safety in multi-worker setups
# Note: In production, access via nginx on port 28080
Frontend:
npm install --prefix ./src/kohaku-hub-ui
npm run dev --prefix ./src/kohaku-hub-ui
Testing:
python scripts/test.py
python scripts/test_auth.py
Documentation
- docs/setup.md - Setup and installation guide
- docs/deployment.md - Deployment architecture
- docs/ports.md - Port configuration reference
- docs/API.md - API endpoints and workflows
- docs/CLI.md - Command-line tool usage
- docs/Admin.md - Admin portal & fallback system
- docs/Git.md - Git clone support
- CONTRIBUTING.md - Contributing guide & roadmap
Security Notes
⚠️ Before Production:
- Change all default passwords in
docker-compose.yml - Set secure
KOHAKU_HUB_SESSION_SECRET - Set secure
KOHAKU_HUB_ADMIN_SECRET_TOKEN - Set secure
LAKEFS_AUTH_ENCRYPT_SECRET_KEY - Use HTTPS with reverse proxy
- Only expose port 28080 (Web UI)
Known Limitations
While core features are stable for alpha release, some advanced features are still in development:
- Repository transfer/squash/delete are experimental/not stable
- Some HuggingFace API endpoints may be incomplete
- Feel free to open issue in this case, but remember to provide full information and minimal reproduction!
See CONTRIBUTING.md for full roadmap.
License
AGPL-3.0
NOTE: We may release some new features under non-commercial license.
Commercial Exemption: If you need any commercial exemption licenses (to not fully open source your system built upon KohakuHub), please contact kohaku@kblueleaf.net
Support
Acknowledgments
- HuggingFace - API design and client library
- LakeFS - Data versioning engine (REST API)
- MinIO - Object storage
Ready for Alpha Testing! Core features are stable, but APIs may evolve based on community feedback. Use in development/testing environments and help us improve.

