nomic-embed-text model implementation (#13071)

This commit is contained in:
nicole pardal
2025-11-18 18:28:10 -08:00
committed by GitHub
parent 485da9fd35
commit 8de30b568a
5 changed files with 184 additions and 6 deletions

View File

@@ -156,6 +156,7 @@ func New(c fs.Config) (model.Model, error) {
)),
},
},
true,
)
default:
return nil, model.ErrUnsupportedTokenizer

View File

@@ -12,6 +12,7 @@ import (
_ "github.com/ollama/ollama/model/models/llama4"
_ "github.com/ollama/ollama/model/models/mistral3"
_ "github.com/ollama/ollama/model/models/mllama"
_ "github.com/ollama/ollama/model/models/nomicbert"
_ "github.com/ollama/ollama/model/models/qwen2"
_ "github.com/ollama/ollama/model/models/qwen25vl"
_ "github.com/ollama/ollama/model/models/qwen3"

View File

@@ -0,0 +1,170 @@
package nomicbert
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TypeEmbedding *nn.Embedding `gguf:"token_types"`
TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"`
Layers []EncoderLayer `gguf:"blk"`
Options
}
type Options struct {
hiddenSize int
numHeads int
headDim int
eps float32
poolingType pooling.Type
normalize bool
ropeFreqBase float32
}
// Single Encoder Layer
type EncoderLayer struct {
*Attention
AttentionNorm *nn.LayerNorm `gguf:"attn_output_norm"`
*MLP
MLPNorm *nn.LayerNorm `gguf:"layer_output_norm"`
}
type Attention struct {
QKV *nn.Linear `gguf:"attn_qkv"`
Output *nn.Linear `gguf:"attn_output"`
}
type MLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
typeEmbed := m.TypeEmbedding.Weight.Slice(ctx, 1, 0, 1, 1)
hiddenStates = hiddenStates.Add(ctx, typeEmbed)
hiddenStates = m.TokenEmbeddingNorm.Forward(ctx, hiddenStates, m.eps)
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
for _, layer := range m.Layers {
hiddenStates = layer.Forward(ctx, hiddenStates, positions, &m.Options)
}
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
if m.normalize {
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
}
return hiddenStates, nil
}
func (e *EncoderLayer) Forward(ctx ml.Context, hiddenStates ml.Tensor, positions ml.Tensor, opts *Options) ml.Tensor {
residual := hiddenStates
hiddenStates = e.Attention.Forward(ctx, hiddenStates, positions, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
residual = hiddenStates
hiddenStates = e.MLP.Forward(ctx, hiddenStates)
hiddenStates = hiddenStates.Add(ctx, residual)
hiddenStates = e.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
return hiddenStates
}
func (a *Attention) Forward(ctx ml.Context, hiddenStates ml.Tensor, positions ml.Tensor, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
qkv := a.QKV.Forward(ctx, hiddenStates)
qkv = qkv.Reshape(ctx, opts.headDim, opts.numHeads*3, batchSize)
chunks := qkv.Chunk(ctx, 1, opts.numHeads)
query, key, value := chunks[0], chunks[1], chunks[2]
query = fast.RoPE(ctx, query, positions, opts.headDim, opts.ropeFreqBase, 1.0, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, opts.headDim, opts.ropeFreqBase, 1.0, rope.WithTypeNeoX())
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(opts.headDim)), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return a.Output.Forward(ctx, attention)
}
func (m *MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
hidden := m.Gate.Forward(ctx, hiddenStates).SILU(ctx, m.Up.Forward(ctx, hiddenStates))
return m.Down.Forward(ctx, hidden)
}
func New(c fs.Config) (model.Model, error) {
hiddenSize := int(c.Uint("embedding_length"))
numHeads := int(c.Uint("attention.head_count"))
headDim := hiddenSize / numHeads
processor := model.NewWordPiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.cls_token_id"),
c.Uint("tokenizer.ggml.bos_token_id"),
)),
},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true),
EOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.separator_token_id"),
c.Uint("tokenizer.ggml.eos_token_id"),
)),
},
},
false,
)
return &Model{
TextProcessor: processor,
Layers: make([]EncoderLayer, c.Uint("block_count")),
Options: Options{
hiddenSize: hiddenSize,
numHeads: numHeads,
headDim: headDim,
eps: c.Float("attention.layer_norm_epsilon"),
poolingType: pooling.Type(c.Uint("pooling_type")),
normalize: c.Bool("normalize_embeddings", false),
ropeFreqBase: c.Float("rope.freq_base", 1000.0),
},
}, nil
}
func init() {
model.Register("nomic-bert", New)
model.Register("nomic-bert_embed", New)
}

View File

@@ -10,7 +10,8 @@ import (
)
type WordPiece struct {
vocab *Vocabulary
vocab *Vocabulary
lowercase bool
}
// ggmlPrefix is the prefix used by GGML vocabularies to indicate word boundaries.
@@ -114,8 +115,10 @@ func (wpm WordPiece) Encode(s string, addSpecial bool) ([]int32, error) {
subword = ggmlPrefix + subword
}
// TODO: some models might not want [ToLower]
piece = wpm.vocab.Encode(strings.ToLower(subword))
if wpm.lowercase {
subword = strings.ToLower(subword)
}
piece = wpm.vocab.Encode(subword)
if piece >= 0 {
break
}
@@ -160,8 +163,9 @@ func (wpm WordPiece) Vocabulary() *Vocabulary {
var _ TextProcessor = (*WordPiece)(nil)
func NewWordPiece(vocab *Vocabulary) WordPiece {
func NewWordPiece(vocab *Vocabulary, lowercase bool) WordPiece {
return WordPiece{
vocab: vocab,
vocab: vocab,
lowercase: lowercase,
}
}

View File

@@ -15,7 +15,9 @@ func TestWordPiece(t *testing.T) {
AddEOS: true,
BOS: []int32{1},
EOS: []int32{2},
})
},
true, // lowercase
)
ids, err := wpm.Encode("Hello world!", true)
if err != nil {