mirror of
https://github.com/ollama/ollama.git
synced 2025-12-05 18:46:22 -06:00
refactor rope
change to a flatter directory structure and group the options with the function update models to call rope in one place
This commit is contained in:
@@ -1,5 +1,4 @@
|
||||
// fast provides implementations of fast (fused) operations for increased performance.
|
||||
package fast
|
||||
package nn
|
||||
|
||||
import (
|
||||
"github.com/ollama/ollama/ml"
|
||||
@@ -8,7 +7,7 @@ import (
|
||||
|
||||
// fastRoPE is an interface for tensors that support fast rotary positional embedding.
|
||||
type fastRoPE interface {
|
||||
RoPE(ctx ml.Context, positionIDs ml.Tensor, dim int, base, scale float32, options ...func(*rope.Options)) ml.Tensor
|
||||
RoPE(ctx ml.Context, positions ml.Tensor, dim int, base, scale float32, options ...func(*rope.Options)) ml.Tensor
|
||||
}
|
||||
|
||||
// RoPE applies rotary positional embedding to tensor `t`.
|
||||
@@ -1,3 +1,4 @@
|
||||
// Package rope provides options for RoPE
|
||||
package rope
|
||||
|
||||
import "github.com/ollama/ollama/ml"
|
||||
@@ -10,7 +10,6 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
@@ -42,13 +41,12 @@ type Options struct {
|
||||
kqScale float64
|
||||
}
|
||||
|
||||
func (o Options) RoPEOptions() []func(*rope.Options) {
|
||||
attnFactor := float32(1.0 / (1.0 + 0.1*math.Log(float64(o.ropeScale))))
|
||||
return []func(*rope.Options){
|
||||
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, t, p ml.Tensor) ml.Tensor {
|
||||
return nn.RoPE(ctx, t, p, o.qkRopeHeadDim, o.ropeBase, 1./o.ropeScale,
|
||||
rope.WithOriginalContextLength(o.originalContextLength),
|
||||
rope.WithExtrapolationFactor(1.),
|
||||
rope.WithAttentionFactor(attnFactor),
|
||||
}
|
||||
rope.WithAttentionFactor(float32(1.0/(1.0+0.1*math.Log(float64(o.ropeScale))))),
|
||||
)
|
||||
}
|
||||
|
||||
type Attention struct {
|
||||
@@ -91,8 +89,8 @@ func (attn *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor
|
||||
compressedKV.Stride(1), compressedKV.Dim(1),
|
||||
)
|
||||
|
||||
qRot := fast.RoPE(ctx, queryChunks[1], positions, opts.qkRopeHeadDim, opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
|
||||
kRot = fast.RoPE(ctx, kRot, positions, opts.qkRopeHeadDim, opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
|
||||
qRot := opts.applyRotaryPositionEmbeddings(ctx, queryChunks[1], positions)
|
||||
kRot = opts.applyRotaryPositionEmbeddings(ctx, kRot, positions)
|
||||
kPass = attn.KVANorm.Forward(ctx, kPass, opts.eps)
|
||||
|
||||
var attention ml.Tensor
|
||||
@@ -327,7 +325,7 @@ func New(c fs.Config) (model.Model, error) {
|
||||
}
|
||||
|
||||
func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return fast.RoPE(ctx, key, shift, m.qkRopeHeadDim, m.ropeBase, 1./m.ropeScale, m.RoPEOptions()...), nil
|
||||
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
|
||||
@@ -6,7 +6,6 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
)
|
||||
|
||||
@@ -20,7 +19,7 @@ type textModel struct {
|
||||
}
|
||||
|
||||
func (m *textModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return m.Options.applyRotaryPositionalEmbedding(ctx, key, shift), nil
|
||||
return m.Options.applyRotaryPositionEmbeddings(ctx, key, shift), nil
|
||||
}
|
||||
|
||||
type textOptions struct {
|
||||
@@ -38,8 +37,8 @@ func (o textOptions) headDim() int {
|
||||
return o.hiddenSize / o.numHeads
|
||||
}
|
||||
|
||||
func (o textOptions) applyRotaryPositionalEmbedding(ctx ml.Context, t, p ml.Tensor) ml.Tensor {
|
||||
return fast.RoPE(ctx, t, p, o.headDim(), o.ropeBase, 1/o.ropeScale, rope.WithTypeNeoX())
|
||||
func (o textOptions) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
|
||||
return nn.RoPE(ctx, states, positions, o.headDim(), o.ropeBase, 1/o.ropeScale, rope.WithTypeNeoX())
|
||||
}
|
||||
|
||||
type textBlock struct {
|
||||
@@ -83,8 +82,8 @@ func (m *textAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Tenso
|
||||
value := m.Value.Forward(ctx, hiddenStates)
|
||||
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, -1)
|
||||
|
||||
query = opts.applyRotaryPositionalEmbedding(ctx, query, positions)
|
||||
key = opts.applyRotaryPositionalEmbedding(ctx, key, positions)
|
||||
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
|
||||
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
|
||||
|
||||
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
|
||||
attention = attention.Reshape(ctx, -1, attention.Dim(2))
|
||||
|
||||
@@ -7,7 +7,6 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
@@ -22,6 +21,10 @@ type Options struct {
|
||||
largeModelScaling bool
|
||||
}
|
||||
|
||||
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
|
||||
return nn.RoPE(ctx, states, positions, o.attnKeyLen, o.ropeBase, 1./o.ropeScale, rope.WithTypeNeoX())
|
||||
}
|
||||
|
||||
type Model struct {
|
||||
model.Base
|
||||
model.SentencePiece
|
||||
@@ -88,7 +91,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
|
||||
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
|
||||
q = opts.applyRotaryPositionEmbeddings(ctx, q, positionIDs)
|
||||
|
||||
if opts.largeModelScaling {
|
||||
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
|
||||
@@ -98,7 +101,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
|
||||
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
|
||||
k = opts.applyRotaryPositionEmbeddings(ctx, k, positionIDs)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
|
||||
@@ -128,7 +131,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
}
|
||||
|
||||
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return fast.RoPE(ctx, key, shift, m.attnKeyLen, m.ropeBase, 1/m.ropeScale, rope.WithTypeNeoX()), nil
|
||||
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
|
||||
@@ -7,7 +7,6 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
@@ -20,6 +19,10 @@ type TextConfig struct {
|
||||
largeModelScaling bool
|
||||
}
|
||||
|
||||
func (o TextConfig) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor, base float32) ml.Tensor {
|
||||
return nn.RoPE(ctx, states, positions, o.attnKeyLen, base, 1./o.ropeScale, rope.WithTypeNeoX())
|
||||
}
|
||||
|
||||
type TextModel struct {
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
Layers []TextLayer `gguf:"blk"`
|
||||
@@ -87,7 +90,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
|
||||
q = sa.QueryNorm.Forward(ctx, q, opts.eps)
|
||||
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
|
||||
q = opts.applyRotaryPositionEmbeddings(ctx, q, positionIDs, ropeBase)
|
||||
|
||||
if opts.largeModelScaling {
|
||||
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
|
||||
@@ -98,7 +101,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
|
||||
k = sa.KeyNorm.Forward(ctx, k, opts.eps)
|
||||
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
|
||||
k = opts.applyRotaryPositionEmbeddings(ctx, k, positionIDs, ropeBase)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
|
||||
@@ -116,7 +119,7 @@ func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.T
|
||||
ropeBase = m.ropeGlobalBase
|
||||
}
|
||||
|
||||
return fast.RoPE(ctx, key, shift, m.attnKeyLen, ropeBase, 1/m.ropeScale, rope.WithTypeNeoX()), nil
|
||||
return m.applyRotaryPositionEmbeddings(ctx, key, shift, ropeBase), nil
|
||||
}
|
||||
|
||||
type TextMLP struct {
|
||||
|
||||
@@ -8,7 +8,6 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
@@ -95,7 +94,7 @@ func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.T
|
||||
ropeBase = m.ropeBaseLocal
|
||||
}
|
||||
|
||||
return fast.RoPE(ctx, key, shift, m.headDim(), ropeBase, 1./m.ropeScale, rope.WithTypeNeoX()), nil
|
||||
return m.applyRotaryPositionEmbeddings(ctx, key, shift, ropeBase), nil
|
||||
}
|
||||
|
||||
type TextScaledWordEmbedding struct {
|
||||
@@ -256,14 +255,14 @@ func (attn TextAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Ten
|
||||
query := attn.Query.Forward(ctx, hiddenStates)
|
||||
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
|
||||
query = attn.QueryNorm.Forward(ctx, query, opts.eps)
|
||||
query = fast.RoPE(ctx, query, positions, opts.headDim(), ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
|
||||
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions, ropeBase)
|
||||
|
||||
var key, value ml.Tensor
|
||||
if !sharedKV {
|
||||
key = attn.Key.Forward(ctx, hiddenStates)
|
||||
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
|
||||
key = attn.KeyNorm.Forward(ctx, key, opts.eps)
|
||||
key = fast.RoPE(ctx, key, positions, opts.headDim(), ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
|
||||
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions, ropeBase)
|
||||
|
||||
value = attn.Value.Forward(ctx, hiddenStates)
|
||||
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
|
||||
@@ -330,6 +329,10 @@ func (o *TextOptions) isLocal(i int) bool {
|
||||
return o.slidingWindowPattern[i]
|
||||
}
|
||||
|
||||
func (o TextOptions) applyRotaryPositionEmbeddings(ctx ml.Context, t, p ml.Tensor, base float32) ml.Tensor {
|
||||
return nn.RoPE(ctx, t, p, o.headDim(), base, 1./o.ropeScale, rope.WithTypeNeoX())
|
||||
}
|
||||
|
||||
func newTextModel(c fs.Config) *TextModel {
|
||||
return &TextModel{
|
||||
TextLayers: make([]TextLayer, c.Uint("block_count")),
|
||||
|
||||
@@ -9,7 +9,6 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
@@ -52,7 +51,7 @@ func (m *Transformer) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, err
|
||||
}
|
||||
|
||||
func (m *Transformer) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return fast.RoPE(ctx, key, shift, m.headDim(), m.ropeBase, 1./m.ropeScale, m.RoPEOptions()...), nil
|
||||
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
|
||||
}
|
||||
|
||||
type Options struct {
|
||||
@@ -70,14 +69,14 @@ type Options struct {
|
||||
ropeScale float32
|
||||
}
|
||||
|
||||
func (o Options) RoPEOptions() []func(*rope.Options) {
|
||||
return []func(*rope.Options){
|
||||
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
|
||||
return nn.RoPE(ctx, states, positions, o.headDim(), o.ropeBase, 1./o.ropeScale,
|
||||
rope.WithTypeNeoX(),
|
||||
rope.WithOriginalContextLength(o.originalContextLength),
|
||||
rope.WithExtrapolationFactor(1.),
|
||||
// NOTE: ggml sets this implicitly so there's no need to set it here
|
||||
// rope.WithAttentionFactor(0.1*float32(math.Log(float64(o.ropeScale))) + 1.0),
|
||||
}
|
||||
// NOTE: ggml sets this implicitly so there's no need to set it here
|
||||
// rope.WithAttentionFactor(0.1*float32(math.Log(float64(o.ropeScale))) + 1.0),
|
||||
)
|
||||
}
|
||||
|
||||
func (o Options) headDim() int {
|
||||
@@ -135,8 +134,8 @@ func (attn *AttentionBlock) Forward(ctx ml.Context, hiddenStates, positions ml.T
|
||||
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
|
||||
}
|
||||
|
||||
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
|
||||
key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
|
||||
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
|
||||
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
|
||||
|
||||
attention := nn.AttentionWithSinks(ctx, query, key, value, attn.Sinks, 1/math.Sqrt(float64(opts.headDim())), cache)
|
||||
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
|
||||
|
||||
@@ -8,7 +8,6 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
@@ -20,6 +19,10 @@ type Options struct {
|
||||
eps, ropeBase, ropeScale float32
|
||||
}
|
||||
|
||||
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions, factors ml.Tensor) ml.Tensor {
|
||||
return nn.RoPE(ctx, states, positions, cmp.Or(o.ropeDim, o.headDim, o.hiddenSize/o.numHeads), o.ropeBase, 1./o.ropeScale, rope.WithFactors(factors))
|
||||
}
|
||||
|
||||
type Model struct {
|
||||
model.Base
|
||||
model.TextProcessor
|
||||
@@ -115,7 +118,6 @@ type SelfAttention struct {
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
|
||||
ropeDim := cmp.Or(opts.ropeDim, headDim)
|
||||
|
||||
query := sa.Query.Forward(ctx, hiddenState)
|
||||
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
@@ -126,8 +128,8 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tenso
|
||||
value := sa.Value.Forward(ctx, hiddenState)
|
||||
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
|
||||
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
|
||||
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions, sa.RopeFactors)
|
||||
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions, sa.RopeFactors)
|
||||
|
||||
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
|
||||
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
|
||||
@@ -135,8 +137,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tenso
|
||||
}
|
||||
|
||||
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
|
||||
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithFactors(m.Layers[layer].SelfAttention.RopeFactors)), nil
|
||||
return m.applyRotaryPositionEmbeddings(ctx, key, shift, m.Layers[layer].SelfAttention.RopeFactors), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
|
||||
@@ -8,7 +8,6 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
@@ -33,8 +32,8 @@ func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions, attent
|
||||
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
if useRope {
|
||||
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
|
||||
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
|
||||
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions, sa.RopeFactors)
|
||||
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions, sa.RopeFactors)
|
||||
}
|
||||
|
||||
if opts.useQKNorm {
|
||||
@@ -152,6 +151,10 @@ type TextOptions struct {
|
||||
attentionFloorScale float64
|
||||
}
|
||||
|
||||
func (o TextOptions) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions, factors ml.Tensor) ml.Tensor {
|
||||
return nn.RoPE(ctx, states, positions, o.ropeDim, o.ropeBase, 1./o.ropeScale, rope.WithFactors(factors))
|
||||
}
|
||||
|
||||
type TextModel struct {
|
||||
Layers []TextLayer `gguf:"blk"`
|
||||
|
||||
@@ -236,5 +239,5 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
|
||||
}
|
||||
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithFactors(m.Layers[layer].Attention.RopeFactors)), nil
|
||||
return m.applyRotaryPositionEmbeddings(ctx, key, shift, m.Layers[layer].Attention.RopeFactors), nil
|
||||
}
|
||||
|
||||
@@ -8,7 +8,6 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
@@ -18,6 +17,10 @@ type TextOptions struct {
|
||||
eps, ropeBase, ropeScale float32
|
||||
}
|
||||
|
||||
func (o TextOptions) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
|
||||
return nn.RoPE(ctx, states, positions, o.ropeDim, o.ropeBase, 1./o.ropeScale)
|
||||
}
|
||||
|
||||
type TextModel struct {
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
Layers []Layer `gguf:"blk"`
|
||||
@@ -40,11 +43,11 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale)
|
||||
q = opts.applyRotaryPositionEmbeddings(ctx, q, positionIDs)
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale)
|
||||
k = opts.applyRotaryPositionEmbeddings(ctx, k, positionIDs)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
@@ -55,7 +58,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
}
|
||||
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale), nil
|
||||
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
|
||||
@@ -16,8 +16,8 @@ func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
|
||||
return x2.Scale(ctx, -1).Concat(ctx, x1, 0)
|
||||
}
|
||||
|
||||
func applyRotaryPositionalEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Tensor {
|
||||
return t.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, t).Mul(ctx, sin))
|
||||
func applyRotaryPositionEmbeddings(ctx ml.Context, states, cos, sin ml.Tensor) ml.Tensor {
|
||||
return states.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, states).Mul(ctx, sin))
|
||||
}
|
||||
|
||||
type VisionSelfAttention struct {
|
||||
@@ -36,8 +36,8 @@ func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, cos, sin ml
|
||||
key = key.Reshape(ctx, opts.headDim, opts.numHeads, key.Dim(1), batchSize)
|
||||
value = value.Reshape(ctx, opts.headDim, opts.numHeads, value.Dim(1), batchSize)
|
||||
|
||||
query = applyRotaryPositionalEmbedding(ctx, query, cos, sin)
|
||||
key = applyRotaryPositionalEmbedding(ctx, key, cos, sin)
|
||||
query = applyRotaryPositionEmbeddings(ctx, query, cos, sin)
|
||||
key = applyRotaryPositionEmbeddings(ctx, key, cos, sin)
|
||||
|
||||
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim)), nil)
|
||||
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
|
||||
|
||||
@@ -8,7 +8,6 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
)
|
||||
|
||||
@@ -26,11 +25,11 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.T
|
||||
|
||||
query := sa.Query.Forward(ctx, hiddenState)
|
||||
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
|
||||
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions, sa.RopeFactors)
|
||||
|
||||
key := sa.Key.Forward(ctx, hiddenState)
|
||||
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
|
||||
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions, sa.RopeFactors)
|
||||
|
||||
value := sa.Value.Forward(ctx, hiddenState)
|
||||
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
@@ -44,8 +43,8 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.T
|
||||
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
// This will only get called for layers in the cache, which are just the self attention layers
|
||||
if sa, ok := m.Transformer.Layers[layer].(*TextSelfAttentionDecoderLayer); ok {
|
||||
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithFactors(sa.SelfAttention.RopeFactors)), nil
|
||||
if layer, ok := m.Transformer.Layers[layer].(*TextSelfAttentionDecoderLayer); ok {
|
||||
return m.applyRotaryPositionEmbeddings(ctx, key, shift, layer.SelfAttention.RopeFactors), nil
|
||||
}
|
||||
|
||||
return key, nil
|
||||
@@ -206,6 +205,10 @@ type TextModelOptions struct {
|
||||
crossAttentionLayers []int32
|
||||
}
|
||||
|
||||
func (o TextModelOptions) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions, factors ml.Tensor) ml.Tensor {
|
||||
return nn.RoPE(ctx, states, positions, o.ropeDim, o.ropeBase, 1./o.ropeScale, rope.WithFactors(factors))
|
||||
}
|
||||
|
||||
type TextModel struct {
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
Transformer *TextDecoder `gguf:"blk"`
|
||||
|
||||
@@ -7,7 +7,6 @@ import (
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/pooling"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model"
|
||||
@@ -37,6 +36,10 @@ type Options struct {
|
||||
ropeFreqBase float32
|
||||
}
|
||||
|
||||
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
|
||||
return nn.RoPE(ctx, states, positions, o.headDim, o.ropeFreqBase, 1.0, rope.WithTypeNeoX())
|
||||
}
|
||||
|
||||
// Single Encoder Layer
|
||||
type EncoderLayer struct {
|
||||
*Attention
|
||||
@@ -105,8 +108,8 @@ func (a *Attention) Forward(ctx ml.Context, hiddenStates ml.Tensor, positions ml
|
||||
chunks := qkv.Chunk(ctx, 1, opts.numHeads)
|
||||
query, key, value := chunks[0], chunks[1], chunks[2]
|
||||
|
||||
query = fast.RoPE(ctx, query, positions, opts.headDim, opts.ropeFreqBase, 1.0, rope.WithTypeNeoX())
|
||||
key = fast.RoPE(ctx, key, positions, opts.headDim, opts.ropeFreqBase, 1.0, rope.WithTypeNeoX())
|
||||
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
|
||||
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
|
||||
|
||||
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(opts.headDim)), nil)
|
||||
|
||||
|
||||
@@ -11,7 +11,6 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
@@ -23,6 +22,10 @@ type Options struct {
|
||||
eps, ropeBase, ropeScale float32
|
||||
}
|
||||
|
||||
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
|
||||
return nn.RoPE(ctx, states, positions, cmp.Or(o.ropeDim, o.headDim, o.hiddenSize/o.numHeads), o.ropeBase, 1./o.ropeScale, rope.WithTypeNeoX())
|
||||
}
|
||||
|
||||
type Attention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
@@ -33,7 +36,6 @@ type Attention struct {
|
||||
func (attn Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
batchSize := hiddenStates.Dim(1)
|
||||
headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
|
||||
ropeDim := cmp.Or(opts.ropeDim, headDim)
|
||||
|
||||
query := attn.Query.Forward(ctx, hiddenStates)
|
||||
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
@@ -44,8 +46,8 @@ func (attn Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor,
|
||||
value := attn.Value.Forward(ctx, hiddenStates)
|
||||
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
|
||||
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
|
||||
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
|
||||
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
|
||||
|
||||
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
|
||||
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
|
||||
@@ -124,8 +126,7 @@ func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
}
|
||||
|
||||
func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
|
||||
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithTypeNeoX()), nil
|
||||
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
|
||||
}
|
||||
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
|
||||
@@ -7,7 +7,6 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
@@ -18,6 +17,13 @@ type TextOptions struct {
|
||||
eps, ropeBase, ropeScale float32
|
||||
}
|
||||
|
||||
func (o TextOptions) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
|
||||
return nn.RoPE(ctx, states, positions, o.ropeDim, o.ropeBase, 1./o.ropeScale,
|
||||
rope.WithOriginalContextLength(o.originalContextLength),
|
||||
rope.WithTypeNeoX(),
|
||||
)
|
||||
}
|
||||
|
||||
type TextModel struct {
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
Layers []Layer `gguf:"blk"`
|
||||
@@ -60,11 +66,11 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
|
||||
q = opts.applyRotaryPositionEmbeddings(ctx, q, positionIDs)
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
|
||||
k = opts.applyRotaryPositionEmbeddings(ctx, k, positionIDs)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
@@ -78,7 +84,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
|
||||
// Shift applies rotary position embeddings to the key tensor for causal attention caching
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithOriginalContextLength(m.originalContextLength), rope.WithTypeNeoX()), nil
|
||||
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
|
||||
}
|
||||
|
||||
// MLP implements the feed-forward network component with SwiGLU activation
|
||||
|
||||
@@ -18,8 +18,8 @@ func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
|
||||
return x2.Scale(ctx, -1).Concat(ctx, x1, 0)
|
||||
}
|
||||
|
||||
func applyRotaryPositionalEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Tensor {
|
||||
return t.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, t).Mul(ctx, sin))
|
||||
func applyRotaryPositionEmbeddings(ctx ml.Context, states, cos, sin ml.Tensor) ml.Tensor {
|
||||
return states.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, states).Mul(ctx, sin))
|
||||
}
|
||||
|
||||
func blockDiagonalMask(ctx ml.Context, seqLength int, bounds []int, numHeads int) ml.Tensor {
|
||||
@@ -67,8 +67,8 @@ func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, cos, sin, m
|
||||
key = key.Reshape(ctx, opts.headDim, opts.numHeads, key.Dim(1), batchSize)
|
||||
value = value.Reshape(ctx, opts.headDim, opts.numHeads, value.Dim(1), batchSize)
|
||||
|
||||
query = applyRotaryPositionalEmbedding(ctx, query, cos, sin)
|
||||
key = applyRotaryPositionalEmbedding(ctx, key, cos, sin)
|
||||
query = applyRotaryPositionEmbeddings(ctx, query, cos, sin)
|
||||
key = applyRotaryPositionEmbeddings(ctx, key, cos, sin)
|
||||
|
||||
// Scale factor for scaled dot-product attention
|
||||
scale := 1.0 / math.Sqrt(float64(opts.headDim))
|
||||
|
||||
@@ -9,7 +9,6 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
@@ -46,7 +45,7 @@ func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions
|
||||
rope.WithAttentionFactor(attnFactor),
|
||||
)
|
||||
}
|
||||
return fast.RoPE(ctx, states, positions, o.headDim(), o.ropeBase, 1./o.ropeScale, opts...)
|
||||
return nn.RoPE(ctx, states, positions, o.headDim(), o.ropeBase, 1./o.ropeScale, opts...)
|
||||
}
|
||||
|
||||
type Attention struct {
|
||||
|
||||
@@ -195,7 +195,7 @@ func New(c fs.Config) (model.Model, error) {
|
||||
m.Cache = kvcache.NewCausalCache(func(ctx ml.Context, layer int, key, positions ml.Tensor) (ml.Tensor, error) {
|
||||
m.positionCache = nil
|
||||
positions = positions.Repeat(ctx, 1, 4).Reshape(ctx, -1)
|
||||
return m.Options.applyRotaryPositionalEmbedding(ctx, key, positions), nil
|
||||
return m.Options.applyRotaryPositionEmbeddings(ctx, key, positions), nil
|
||||
})
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
@@ -10,7 +10,6 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model"
|
||||
)
|
||||
@@ -35,8 +34,8 @@ func (o TextOptions) headDim() int {
|
||||
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
|
||||
}
|
||||
|
||||
func (o TextOptions) applyRotaryPositionalEmbedding(ctx ml.Context, t, p ml.Tensor) ml.Tensor {
|
||||
return fast.RoPE(ctx, t, p, o.headDim(), o.ropeBase, 1/float32(math.Sqrt(float64(o.ropeScale))),
|
||||
func (o TextOptions) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
|
||||
return nn.RoPE(ctx, states, positions, o.headDim(), o.ropeBase, 1/float32(math.Sqrt(float64(o.ropeScale))),
|
||||
rope.WithInterleaveMRoPE(o.mropeSections),
|
||||
)
|
||||
}
|
||||
@@ -64,8 +63,8 @@ func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Tens
|
||||
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
|
||||
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
|
||||
|
||||
query = opts.applyRotaryPositionalEmbedding(ctx, query, positions)
|
||||
key = opts.applyRotaryPositionalEmbedding(ctx, key, positions)
|
||||
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
|
||||
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
|
||||
|
||||
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
|
||||
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
|
||||
|
||||
@@ -23,18 +23,18 @@ func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
|
||||
return x2.Scale(ctx, -1).Concat(ctx, x1, 0)
|
||||
}
|
||||
|
||||
func applyRotaryPositionalEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Tensor {
|
||||
return t.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, t).Mul(ctx, sin))
|
||||
func applyRotaryPositionEmbeddings(ctx ml.Context, states, cos, sin ml.Tensor) ml.Tensor {
|
||||
return states.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, states).Mul(ctx, sin))
|
||||
}
|
||||
|
||||
func (sa *VisionAttention) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts VisionOptions) ml.Tensor {
|
||||
query := sa.Query.Forward(ctx, hiddenStates)
|
||||
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, query.Dim(1))
|
||||
query = applyRotaryPositionalEmbedding(ctx, query, cos, sin)
|
||||
query = applyRotaryPositionEmbeddings(ctx, query, cos, sin)
|
||||
|
||||
key := sa.Key.Forward(ctx, hiddenStates)
|
||||
key = key.Reshape(ctx, opts.headDim(), opts.numHeads, key.Dim(1))
|
||||
key = applyRotaryPositionalEmbedding(ctx, key, cos, sin)
|
||||
key = applyRotaryPositionEmbeddings(ctx, key, cos, sin)
|
||||
|
||||
value := sa.Value.Forward(ctx, hiddenStates)
|
||||
value = value.Reshape(ctx, opts.headDim(), opts.numHeads, value.Dim(1))
|
||||
|
||||
Reference in New Issue
Block a user