mirror of
https://github.com/ollama/ollama.git
synced 2025-12-05 18:46:22 -06:00
We now do a deeper probe of CUDA devices to verify the library version has the correct compute capability coverage for the device. Due to ROCm also interpreting the CUDA env var to filter AMD devices, we try to avoid setting it which leads to problems in mixed vendor systems. However without setting it for this deeper probe, each CUDA library subprocess discovers all CUDA GPUs and on systems with lots of GPUs, this can lead to hitting timeouts. The fix is to turn on the CUDA visibility env var just for this deeper probe use-case.
1843 lines
53 KiB
Go
1843 lines
53 KiB
Go
package llm
|
|
|
|
import (
|
|
"bufio"
|
|
"bytes"
|
|
"context"
|
|
"encoding/json"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"log"
|
|
"log/slog"
|
|
"math/rand"
|
|
"net"
|
|
"net/http"
|
|
"os"
|
|
"os/exec"
|
|
"path/filepath"
|
|
"runtime"
|
|
"slices"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
"sync"
|
|
"time"
|
|
|
|
"golang.org/x/sync/semaphore"
|
|
|
|
"github.com/ollama/ollama/api"
|
|
"github.com/ollama/ollama/envconfig"
|
|
"github.com/ollama/ollama/format"
|
|
"github.com/ollama/ollama/fs/ggml"
|
|
"github.com/ollama/ollama/llama"
|
|
"github.com/ollama/ollama/logutil"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/model"
|
|
)
|
|
|
|
type filteredEnv []string
|
|
|
|
func (e filteredEnv) LogValue() slog.Value {
|
|
var attrs []slog.Attr
|
|
for _, env := range e {
|
|
if key, value, ok := strings.Cut(env, "="); ok {
|
|
switch {
|
|
case strings.HasPrefix(key, "OLLAMA_"),
|
|
strings.HasPrefix(key, "CUDA_"),
|
|
strings.HasPrefix(key, "ROCR_"),
|
|
strings.HasPrefix(key, "ROCM_"),
|
|
strings.HasPrefix(key, "HIP_"),
|
|
strings.HasPrefix(key, "GPU_"),
|
|
strings.HasPrefix(key, "HSA_"),
|
|
strings.HasPrefix(key, "GGML_"),
|
|
slices.Contains([]string{
|
|
"PATH",
|
|
"LD_LIBRARY_PATH",
|
|
"DYLD_LIBRARY_PATH",
|
|
}, key):
|
|
attrs = append(attrs, slog.String(key, value))
|
|
}
|
|
}
|
|
}
|
|
return slog.GroupValue(attrs...)
|
|
}
|
|
|
|
type LlamaServer interface {
|
|
ModelPath() string
|
|
Load(ctx context.Context, systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, requireFull bool) ([]ml.DeviceID, error)
|
|
Ping(ctx context.Context) error
|
|
WaitUntilRunning(ctx context.Context) error
|
|
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
|
|
Embedding(ctx context.Context, input string) ([]float32, error)
|
|
Tokenize(ctx context.Context, content string) ([]int, error)
|
|
Detokenize(ctx context.Context, tokens []int) (string, error)
|
|
Close() error
|
|
VRAMSize() uint64 // Total VRAM across all GPUs
|
|
TotalSize() uint64
|
|
VRAMByGPU(id ml.DeviceID) uint64
|
|
Pid() int
|
|
GetPort() int
|
|
GetDeviceInfos(ctx context.Context) []ml.DeviceInfo
|
|
HasExited() bool
|
|
}
|
|
|
|
// llmServer is an instance of a runner hosting a single model
|
|
type llmServer struct {
|
|
port int
|
|
cmd *exec.Cmd
|
|
done chan error // Channel to signal when the process exits
|
|
status *StatusWriter
|
|
options api.Options
|
|
modelPath string
|
|
|
|
loadRequest LoadRequest // Parameters used to initialize the runner
|
|
mem *ml.BackendMemory // Memory allocations for this model
|
|
|
|
// llamaModel is an instance of the cgo llama.cpp model definition
|
|
// nil if this server is running the new engine
|
|
llamaModel *llama.Model
|
|
llamaModelLock *sync.Mutex
|
|
|
|
totalLayers uint64
|
|
loadStart time.Time // Record how long it took the model to load
|
|
loadProgress float32
|
|
|
|
sem *semaphore.Weighted
|
|
}
|
|
|
|
type llamaServer struct {
|
|
llmServer
|
|
|
|
ggml *ggml.GGML
|
|
}
|
|
|
|
type ollamaServer struct {
|
|
llmServer
|
|
|
|
textProcessor model.TextProcessor // textProcessor handles text encoding/decoding
|
|
}
|
|
|
|
// LoadModel will load a model from disk. The model must be in the GGML format.
|
|
//
|
|
// It collects array values for arrays with a size less than or equal to
|
|
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
|
|
// the maxArraySize is negative, all arrays are collected.
|
|
func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
|
|
if _, err := os.Stat(model); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
f, err := os.Open(model)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer f.Close()
|
|
|
|
ggml, err := ggml.Decode(f, maxArraySize)
|
|
return ggml, err
|
|
}
|
|
|
|
// NewLlamaServer will run a server for the given GPUs
|
|
func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
|
|
var llamaModel *llama.Model
|
|
var textProcessor model.TextProcessor
|
|
var err error
|
|
if envconfig.NewEngine() || f.KV().OllamaEngineRequired() {
|
|
if len(projectors) == 0 {
|
|
textProcessor, err = model.NewTextProcessor(modelPath)
|
|
} else {
|
|
err = errors.New("split vision models aren't supported")
|
|
}
|
|
if err != nil {
|
|
// To prepare for opt-out mode, instead of treating this as an error, we fallback to the old runner
|
|
slog.Debug("model not yet supported by Ollama engine, switching to compatibility mode", "model", modelPath, "error", err)
|
|
}
|
|
}
|
|
if textProcessor == nil {
|
|
llamaModel, err = llama.LoadModelFromFile(modelPath, llama.ModelParams{VocabOnly: true})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
// Verify the requested context size is <= the model training size
|
|
trainCtx := f.KV().ContextLength()
|
|
if opts.NumCtx > int(trainCtx) && trainCtx > 0 {
|
|
slog.Warn("requested context size too large for model", "num_ctx", opts.NumCtx, "n_ctx_train", trainCtx)
|
|
opts.NumCtx = int(trainCtx)
|
|
}
|
|
|
|
opts.NumBatch = min(opts.NumBatch, opts.NumCtx)
|
|
|
|
loadRequest := LoadRequest{LoraPath: adapters, KvSize: opts.NumCtx * numParallel, BatchSize: opts.NumBatch, Parallel: numParallel, MultiUserCache: envconfig.MultiUserCache()}
|
|
|
|
defaultThreads := systemInfo.ThreadCount
|
|
if opts.NumThread > 0 {
|
|
loadRequest.NumThreads = opts.NumThread
|
|
} else if defaultThreads > 0 {
|
|
loadRequest.NumThreads = defaultThreads
|
|
}
|
|
|
|
// TODO - NUMA support currently doesn't work properly
|
|
|
|
if opts.MainGPU > 0 {
|
|
loadRequest.MainGPU = opts.MainGPU
|
|
}
|
|
|
|
if len(projectors) > 0 && llamaModel != nil {
|
|
loadRequest.ProjectorPath = projectors[0]
|
|
}
|
|
|
|
fa := envconfig.FlashAttention(f.FlashAttention())
|
|
|
|
// This will disable flash attention unless all GPUs on the system support it, even if we end up selecting a subset
|
|
// that can handle it.
|
|
if fa && !ml.FlashAttentionSupported(gpus) {
|
|
slog.Warn("flash attention enabled but not supported by gpu")
|
|
fa = false
|
|
}
|
|
|
|
if fa && !f.SupportsFlashAttention() {
|
|
slog.Warn("flash attention enabled but not supported by model")
|
|
fa = false
|
|
}
|
|
|
|
kvct := strings.ToLower(envconfig.KvCacheType())
|
|
|
|
if fa {
|
|
slog.Info("enabling flash attention")
|
|
loadRequest.FlashAttention = true
|
|
|
|
// Flash Attention also supports kv cache quantization
|
|
// Enable if the requested and kv cache type is supported by the model
|
|
if f.SupportsKVCacheType(kvct) {
|
|
loadRequest.KvCacheType = kvct
|
|
} else {
|
|
slog.Warn("kv cache type not supported by model", "type", kvct)
|
|
}
|
|
} else if kvct != "" && kvct != "f16" {
|
|
slog.Warn("quantized kv cache requested but flash attention disabled", "type", kvct)
|
|
}
|
|
|
|
gpuLibs := ml.LibraryPaths(gpus)
|
|
status := NewStatusWriter(os.Stderr)
|
|
cmd, port, err := StartRunner(
|
|
textProcessor != nil,
|
|
modelPath,
|
|
gpuLibs,
|
|
status,
|
|
ml.GetVisibleDevicesEnv(gpus, false),
|
|
)
|
|
|
|
s := llmServer{
|
|
port: port,
|
|
cmd: cmd,
|
|
status: status,
|
|
options: opts,
|
|
modelPath: modelPath,
|
|
loadRequest: loadRequest,
|
|
llamaModel: llamaModel,
|
|
llamaModelLock: &sync.Mutex{},
|
|
sem: semaphore.NewWeighted(int64(numParallel)),
|
|
totalLayers: f.KV().BlockCount() + 1,
|
|
loadStart: time.Now(),
|
|
done: make(chan error, 1),
|
|
}
|
|
|
|
if err != nil {
|
|
var msg string
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
err := fmt.Errorf("error starting runner: %v %s", err, msg)
|
|
if llamaModel != nil {
|
|
llama.FreeModel(llamaModel)
|
|
}
|
|
return nil, err
|
|
}
|
|
|
|
// reap subprocess when it exits
|
|
go func() {
|
|
err := s.cmd.Wait()
|
|
// Favor a more detailed message over the process exit status
|
|
if err != nil && s.status != nil && s.status.LastErrMsg != "" {
|
|
slog.Error("llama runner terminated", "error", err)
|
|
if strings.Contains(s.status.LastErrMsg, "unknown model") {
|
|
s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
|
|
}
|
|
s.done <- errors.New(s.status.LastErrMsg)
|
|
} else {
|
|
s.done <- err
|
|
}
|
|
}()
|
|
|
|
if textProcessor != nil {
|
|
return &ollamaServer{llmServer: s, textProcessor: textProcessor}, nil
|
|
} else {
|
|
return &llamaServer{llmServer: s, ggml: f}, nil
|
|
}
|
|
}
|
|
|
|
func StartRunner(ollamaEngine bool, modelPath string, gpuLibs []string, out io.Writer, extraEnvs map[string]string) (cmd *exec.Cmd, port int, err error) {
|
|
var exe string
|
|
exe, err = os.Executable()
|
|
if err != nil {
|
|
return nil, 0, fmt.Errorf("unable to lookup executable path: %w", err)
|
|
}
|
|
|
|
if eval, err := filepath.EvalSymlinks(exe); err == nil {
|
|
exe = eval
|
|
}
|
|
|
|
port = 0
|
|
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
|
|
var l *net.TCPListener
|
|
if l, err = net.ListenTCP("tcp", a); err == nil {
|
|
port = l.Addr().(*net.TCPAddr).Port
|
|
l.Close()
|
|
}
|
|
}
|
|
if port == 0 {
|
|
slog.Debug("ResolveTCPAddr failed, using random port")
|
|
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
|
|
}
|
|
params := []string{"runner"}
|
|
if ollamaEngine {
|
|
params = append(params, "--ollama-engine")
|
|
}
|
|
if modelPath != "" {
|
|
params = append(params, "--model", modelPath)
|
|
}
|
|
params = append(params, "--port", strconv.Itoa(port))
|
|
|
|
var pathEnv string
|
|
switch runtime.GOOS {
|
|
case "windows":
|
|
pathEnv = "PATH"
|
|
case "darwin":
|
|
pathEnv = "DYLD_LIBRARY_PATH"
|
|
default:
|
|
pathEnv = "LD_LIBRARY_PATH"
|
|
}
|
|
|
|
// Note: we always put our dependency paths first
|
|
// since these are the exact version we compiled/linked against
|
|
libraryPaths := append([]string{}, gpuLibs...)
|
|
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
|
|
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
|
|
}
|
|
|
|
cmd = exec.Command(exe, params...)
|
|
|
|
cmd.Env = os.Environ()
|
|
|
|
if out != nil {
|
|
stdout, err := cmd.StdoutPipe()
|
|
if err != nil {
|
|
return nil, 0, fmt.Errorf("failed to spawn server stdout pipe: %w", err)
|
|
}
|
|
stderr, err := cmd.StderrPipe()
|
|
if err != nil {
|
|
return nil, 0, fmt.Errorf("failed to spawn server stderr pipe: %w", err)
|
|
}
|
|
go func() {
|
|
io.Copy(out, stdout) //nolint:errcheck
|
|
}()
|
|
go func() {
|
|
io.Copy(out, stderr) //nolint:errcheck
|
|
}()
|
|
}
|
|
cmd.SysProcAttr = LlamaServerSysProcAttr
|
|
|
|
// Always filter down the set of GPUs in case there are any unsupported devices that might crash
|
|
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
|
|
|
|
// Update or add the path variable with our adjusted version
|
|
pathNeeded := true
|
|
ollamaPathNeeded := true
|
|
extraEnvsDone := map[string]bool{}
|
|
for k := range extraEnvs {
|
|
extraEnvsDone[k] = false
|
|
}
|
|
for i := range cmd.Env {
|
|
cmp := strings.SplitN(cmd.Env[i], "=", 2)
|
|
if strings.EqualFold(cmp[0], pathEnv) {
|
|
cmd.Env[i] = pathEnv + "=" + pathEnvVal
|
|
pathNeeded = false
|
|
} else if strings.EqualFold(cmp[0], "OLLAMA_LIBRARY_PATH") {
|
|
cmd.Env[i] = "OLLAMA_LIBRARY_PATH=" + strings.Join(gpuLibs, string(filepath.ListSeparator))
|
|
ollamaPathNeeded = false
|
|
} else if len(extraEnvs) != 0 {
|
|
for k, v := range extraEnvs {
|
|
if strings.EqualFold(cmp[0], k) {
|
|
cmd.Env[i] = k + "=" + v
|
|
extraEnvsDone[k] = true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if pathNeeded {
|
|
cmd.Env = append(cmd.Env, pathEnv+"="+pathEnvVal)
|
|
}
|
|
if ollamaPathNeeded {
|
|
cmd.Env = append(cmd.Env, "OLLAMA_LIBRARY_PATH="+strings.Join(gpuLibs, string(filepath.ListSeparator)))
|
|
}
|
|
for k, done := range extraEnvsDone {
|
|
if !done {
|
|
cmd.Env = append(cmd.Env, k+"="+extraEnvs[k])
|
|
}
|
|
}
|
|
|
|
slog.Info("starting runner", "cmd", cmd)
|
|
slog.Debug("subprocess", "", filteredEnv(cmd.Env))
|
|
|
|
if err = cmd.Start(); err != nil {
|
|
return nil, 0, err
|
|
}
|
|
err = nil
|
|
return
|
|
}
|
|
|
|
func (s *llmServer) ModelPath() string {
|
|
return s.modelPath
|
|
}
|
|
|
|
type LoadOperation int
|
|
|
|
// The order of these constants are significant because we iterate over the operations. They
|
|
// should be in order of increasingly loading the model.
|
|
const (
|
|
LoadOperationFit LoadOperation = iota // Return memory requirements but do not allocate
|
|
LoadOperationAlloc // Allocate memory but do not load the weights
|
|
LoadOperationCommit // Load weights - further changes cannot be made after this
|
|
LoadOperationClose // Close model and free memory
|
|
)
|
|
|
|
func (o LoadOperation) String() string {
|
|
switch o {
|
|
case LoadOperationFit:
|
|
return "fit"
|
|
case LoadOperationAlloc:
|
|
return "alloc"
|
|
case LoadOperationCommit:
|
|
return "commit"
|
|
case LoadOperationClose:
|
|
return "close"
|
|
default:
|
|
return "unknown"
|
|
}
|
|
}
|
|
|
|
type LoadRequest struct {
|
|
Operation LoadOperation
|
|
|
|
LoraPath []string
|
|
Parallel int
|
|
BatchSize int
|
|
FlashAttention bool
|
|
KvSize int
|
|
KvCacheType string
|
|
NumThreads int
|
|
GPULayers ml.GPULayersList
|
|
MultiUserCache bool
|
|
|
|
// Legacy fields - not used with the Ollama engine
|
|
ProjectorPath string
|
|
MainGPU int
|
|
UseMmap bool
|
|
}
|
|
|
|
type LoadResponse struct {
|
|
Success bool
|
|
Memory ml.BackendMemory
|
|
}
|
|
|
|
var ErrLoadRequiredFull = errors.New("unable to load full model on GPU")
|
|
|
|
func (s *llamaServer) Load(ctx context.Context, systemInfo ml.SystemInfo, systemGPUs []ml.DeviceInfo, requireFull bool) ([]ml.DeviceID, error) {
|
|
slog.Info("loading model", "model layers", s.totalLayers, "requested", s.options.NumGPU)
|
|
|
|
gpus := append(make([]ml.DeviceInfo, 0, len(systemGPUs)), systemGPUs...)
|
|
|
|
// Synthesize memory allocation information based on our estimates
|
|
s.mem = &ml.BackendMemory{CPU: ml.DeviceMemory{
|
|
Name: "CPU",
|
|
Weights: make([]uint64, s.totalLayers),
|
|
Cache: make([]uint64, s.totalLayers),
|
|
}, GPUs: make([]ml.DeviceMemory, len(gpus))}
|
|
|
|
for i := range s.mem.GPUs {
|
|
s.mem.GPUs[i].Name = gpus[i].Name
|
|
s.mem.GPUs[i].DeviceID = gpus[i].DeviceID
|
|
s.mem.GPUs[i].Weights = make([]uint64, s.totalLayers)
|
|
s.mem.GPUs[i].Cache = make([]uint64, s.totalLayers)
|
|
}
|
|
|
|
kv, graphPartialOffload, graphFullOffload := s.ggml.GraphSize(uint64(s.options.NumCtx), uint64(s.loadRequest.BatchSize),
|
|
s.loadRequest.Parallel, s.loadRequest.KvCacheType, s.loadRequest.FlashAttention)
|
|
|
|
// Use the size of one layer as a buffer
|
|
layers := s.ggml.Tensors().GroupLayers()
|
|
if blk0, ok := layers["blk.0"]; ok {
|
|
for i := range gpus {
|
|
gpus[i].FreeMemory -= blk0.Size() + kv[0]
|
|
}
|
|
} else {
|
|
slog.Warn("model missing blk.0 layer size")
|
|
}
|
|
|
|
// Assign all the layers to the CPU for now, they will get reassigned later
|
|
for i := range s.ggml.KV().BlockCount() {
|
|
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
|
|
s.mem.CPU.Weights[i] = blk.Size()
|
|
s.mem.CPU.Cache[i] += kv[i]
|
|
}
|
|
}
|
|
|
|
// We historically haven't included InputWeights in the model size
|
|
var outputWeights uint64
|
|
if layer, ok := layers["output_norm"]; ok {
|
|
outputWeights += layer.Size()
|
|
}
|
|
if layer, ok := layers["output"]; ok {
|
|
outputWeights += layer.Size()
|
|
} else if layer, ok := layers["token_embd"]; ok {
|
|
outputWeights += layer.Size()
|
|
}
|
|
s.mem.CPU.Weights[s.totalLayers-1] = outputWeights
|
|
|
|
// The vision projector is always loaded on the first GPU if available.
|
|
// This can't be assigned by us, so just subtract it from free space
|
|
projectorGPU := -1
|
|
var projectorWeights uint64
|
|
if len(gpus) > 0 {
|
|
for _, projector := range s.loadRequest.LoraPath {
|
|
projectorWeights += projectorMemoryRequirements(projector)
|
|
}
|
|
|
|
// llama.cpp uses the first discrete GPU if available, otherwise the first iGPU
|
|
firstIntegrated := -1
|
|
for i := range gpus {
|
|
if !gpus[i].Integrated {
|
|
projectorGPU = i
|
|
break
|
|
}
|
|
if firstIntegrated == -1 {
|
|
firstIntegrated = i
|
|
}
|
|
}
|
|
if projectorGPU == -1 {
|
|
projectorGPU = firstIntegrated
|
|
}
|
|
|
|
gpus[projectorGPU].FreeMemory -= projectorWeights
|
|
}
|
|
|
|
var kvTotal uint64
|
|
for _, kvLayer := range kv {
|
|
kvTotal += kvLayer
|
|
}
|
|
|
|
if graphPartialOffload == 0 {
|
|
headsKV := s.ggml.KV().HeadCountKVMin()
|
|
if headsKV == 0 {
|
|
headsKV = 1
|
|
}
|
|
gqa := s.ggml.KV().HeadCountMax() / headsKV
|
|
graphPartialOffload = gqa * kvTotal / 6
|
|
}
|
|
if graphFullOffload == 0 {
|
|
graphFullOffload = graphPartialOffload
|
|
}
|
|
|
|
// On Metal there's no partial offload overhead
|
|
if len(gpus) > 0 && gpus[0].Library == "Metal" {
|
|
graphPartialOffload = graphFullOffload
|
|
}
|
|
|
|
// Create a layout based on the memory data that we've built. The compute graph
|
|
// for GPUs is iteratively assigned based on the number of GPUs that are required.
|
|
var gpuLayers ml.GPULayersList
|
|
for {
|
|
prevGPULayers := gpuLayers
|
|
|
|
var err error
|
|
gpuLayers, err = s.createLayout(systemInfo, gpus, s.mem, requireFull, 0)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if len(gpuLayers) > len(prevGPULayers) {
|
|
for _, gl := range gpuLayers {
|
|
for i := range s.mem.GPUs {
|
|
if gl.DeviceID == s.mem.GPUs[i].DeviceID {
|
|
s.mem.GPUs[i].Graph = max(graphPartialOffload, graphFullOffload)
|
|
break
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
break
|
|
}
|
|
}
|
|
|
|
// This maintains the historical assignment of graph sizes, though it isn't fully accurate
|
|
graphSize := graphFullOffload
|
|
if gpuLayers.Sum() < int(s.totalLayers) {
|
|
graphSize = graphPartialOffload
|
|
}
|
|
|
|
// For all layers that we have assigned to GPUs, move them in the memory data so
|
|
// that it is reported accurately
|
|
for _, gl := range gpuLayers {
|
|
for i := range s.mem.GPUs {
|
|
if gl.DeviceID == s.mem.GPUs[i].DeviceID {
|
|
for _, l := range gl.Layers {
|
|
s.mem.GPUs[i].Weights[l] = s.mem.CPU.Weights[l]
|
|
s.mem.GPUs[i].Cache[l] = s.mem.CPU.Cache[l]
|
|
|
|
s.mem.CPU.Weights[l] = 0
|
|
s.mem.CPU.Cache[l] = 0
|
|
}
|
|
|
|
s.mem.GPUs[i].Graph = graphSize
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
if projectorGPU > 0 && len(s.mem.GPUs[projectorGPU].Weights) > 0 {
|
|
s.mem.GPUs[projectorGPU].Weights[s.totalLayers-1] += projectorWeights
|
|
}
|
|
|
|
slog.Debug("memory", "estimate", s.mem)
|
|
s.mem.Log(slog.LevelInfo)
|
|
|
|
// The llama engine uses mmap by default
|
|
s.loadRequest.UseMmap = true
|
|
|
|
// mmap has issues with partial offloading on metal
|
|
for _, g := range gpus {
|
|
if g.Library == "Metal" &&
|
|
uint64(s.options.NumGPU) > 0 &&
|
|
uint64(s.options.NumGPU) < s.totalLayers {
|
|
s.options.UseMMap = new(bool)
|
|
*s.options.UseMMap = false
|
|
}
|
|
}
|
|
|
|
// Windows CUDA should not use mmap for best performance
|
|
// Linux with a model larger than free space, mmap leads to thrashing
|
|
// For CPU loads we want the memory to be allocated, not FS cache
|
|
if (runtime.GOOS == "windows" && len(gpus) > 0 && gpus[0].Library == "CUDA" && s.options.UseMMap == nil) ||
|
|
(runtime.GOOS == "linux" && systemInfo.FreeMemory < s.TotalSize() && s.options.UseMMap == nil) ||
|
|
(len(gpus) == 0 && s.options.UseMMap == nil) ||
|
|
(len(gpus) > 0 && gpus[0].Library == "Vulkan" && s.options.UseMMap == nil) ||
|
|
(s.options.UseMMap != nil && !*s.options.UseMMap) {
|
|
s.loadRequest.UseMmap = false
|
|
}
|
|
|
|
if err := s.waitUntilRunnerLaunched(ctx); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
s.loadRequest.GPULayers = gpuLayers
|
|
resp, err := s.initModel(ctx, s.loadRequest, LoadOperationCommit)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if !resp.Success {
|
|
return nil, errors.New("failed to allocate memory for model")
|
|
}
|
|
|
|
// The llama engine does its memory allocations together with model loading, so we
|
|
// need to wait until it is done to ensure that we have accurate memory data before
|
|
// loading the next model
|
|
return uniqueDeviceIDs(s.loadRequest.GPULayers), s.WaitUntilRunning(ctx)
|
|
}
|
|
|
|
func projectorMemoryRequirements(filename string) (weights uint64) {
|
|
file, err := os.Open(filename)
|
|
if err != nil {
|
|
return 0
|
|
}
|
|
defer file.Close()
|
|
|
|
ggml, err := ggml.Decode(file, 1024)
|
|
if err != nil {
|
|
return 0
|
|
}
|
|
|
|
for _, layer := range ggml.Tensors().GroupLayers() {
|
|
weights += layer.Size()
|
|
}
|
|
|
|
return weights
|
|
}
|
|
|
|
// Load finds the optimal layout of layers to offload on GPUs based on no initial information about the size of the model
|
|
// It does this by:
|
|
// 1. Assigning the full model to the GPU with the largest available free memory
|
|
// 2. Attempting to allocate the layout and receiving the memory requirements in response
|
|
// 3. Creating a new layout based on the updated memory information
|
|
// 4. Going back to step 2 and looping until we either stabilize on a particular layout or discover that we have entered a cycle
|
|
//
|
|
// This process is repeated for higher levels of loading the model (fit, allocate, commit). The earlier levels are quicker,
|
|
// allowing for faster iteration, but may return less information.
|
|
//
|
|
// Returns the list of GPU IDs that were used in the final allocation on success
|
|
func (s *ollamaServer) Load(ctx context.Context, systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, requireFull bool) ([]ml.DeviceID, error) {
|
|
var success bool
|
|
defer func() {
|
|
if !success {
|
|
s.initModel(ctx, LoadRequest{}, LoadOperationClose)
|
|
}
|
|
if s.mem != nil {
|
|
s.mem.Log(slog.LevelInfo)
|
|
}
|
|
}()
|
|
|
|
slog.Info("loading model", "model layers", s.totalLayers, "requested", s.options.NumGPU)
|
|
|
|
pastAllocations := make(map[uint64]struct{})
|
|
var backoff float32
|
|
|
|
gpuLayers, err := s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err := s.waitUntilRunnerLaunched(ctx); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
nextOperation:
|
|
for operation := LoadOperationFit; operation < LoadOperationCommit; operation++ {
|
|
nextLoad:
|
|
for {
|
|
s.loadRequest.GPULayers = gpuLayers
|
|
resp, err := s.initModel(ctx, s.loadRequest, operation)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
resp.Memory.Log(slog.LevelDebug)
|
|
slog.Debug("memory", "success", resp.Success, "required", resp.Memory)
|
|
|
|
pastAllocations[gpuLayers.Hash()] = struct{}{}
|
|
s.mem = &resp.Memory
|
|
|
|
for {
|
|
newGPULayers, err := s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
slog.Debug("new layout created", "layers", newGPULayers)
|
|
|
|
// We get additional memory information over time, which will reduce the number of
|
|
// layers that can fit, so fewer layers is actually better. As long as we haven't seen
|
|
// this layout before and it doesn't have more layers than the last one, we can keep
|
|
// trying to see if we can do better.
|
|
if _, ok := pastAllocations[newGPULayers.Hash()]; !ok && newGPULayers.Sum() <= gpuLayers.Sum() {
|
|
gpuLayers = newGPULayers
|
|
continue nextLoad
|
|
}
|
|
|
|
// If we are looping around a few different layouts due to graphs moving off and on
|
|
// GPUs, make sure that we try out the intermediate states. For example, if we are
|
|
// looping between offloading 39 and 41 layers, we should also check 40.
|
|
//
|
|
// This switches strategies to force an incremental number of layers to be offloaded
|
|
// and checking the memory layout. If the allocation succeeds and creating a new layout
|
|
// without forcing offload yields the same or greater number of layers offloaded, then
|
|
// the trial is successful.
|
|
//
|
|
// This alternate strategy does not introduce the possibility of loops with the overall
|
|
// state machine, as it exits this code block either with a successful result, moving
|
|
// to the next operation or the original number of layers offloaded.
|
|
if s.options.NumGPU < 0 && newGPULayers.Sum()-gpuLayers.Sum() > 1 {
|
|
for i := newGPULayers.Sum() - 1; i >= gpuLayers.Sum(); i-- {
|
|
slog.Debug("exploring intermediate layers", "layer", i)
|
|
|
|
s.options.NumGPU = i
|
|
newGPULayers, err = s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
|
|
s.options.NumGPU = -1
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
slog.Debug("new layout created", "layers", newGPULayers)
|
|
|
|
s.loadRequest.GPULayers = newGPULayers
|
|
resp, err = s.initModel(ctx, s.loadRequest, operation)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
resp.Memory.Log(slog.LevelDebug)
|
|
slog.Debug("memory", "success", resp.Success, "required", resp.Memory)
|
|
|
|
if resp.Success {
|
|
verifyGPULayers, err := s.createLayout(systemInfo, gpus, &resp.Memory, requireFull, backoff)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
slog.Debug("verifying layout", "layers", verifyGPULayers)
|
|
|
|
if newGPULayers.Sum() <= verifyGPULayers.Sum() {
|
|
gpuLayers = newGPULayers
|
|
|
|
// Since we are going backwards (increasing the number of layers), ensure that
|
|
// we can come back down if needed
|
|
clear(pastAllocations)
|
|
|
|
continue nextOperation
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we generated a layout a second time or go backwards, then we've converged. Use the last
|
|
// layout before the repeat, which is already allocated.
|
|
if resp.Success {
|
|
continue nextOperation
|
|
}
|
|
|
|
if s.options.NumGPU >= 0 {
|
|
return nil, fmt.Errorf("memory layout cannot be allocated with num_gpu = %v", s.options.NumGPU)
|
|
}
|
|
|
|
// Memory allocation failed even though we created a layout that we thought should
|
|
// fit in available memory. This could happen if either our free memory reports
|
|
// are incorrect or if available memory is changing between layout and allocation
|
|
// time. Apply a backoff to try to find the real amount of available space.
|
|
if backoff > 1 {
|
|
slog.Warn("memory layout cannot be allocated", "memory", resp.Memory)
|
|
return nil, errors.New("memory layout cannot be allocated")
|
|
} else {
|
|
backoff += 0.1
|
|
}
|
|
|
|
slog.Info("model layout did not fit, applying backoff", "backoff", fmt.Sprintf("%.2f", backoff))
|
|
}
|
|
}
|
|
}
|
|
|
|
s.loadRequest.GPULayers = gpuLayers
|
|
resp, err := s.initModel(ctx, s.loadRequest, LoadOperationCommit)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
success = resp.Success
|
|
s.mem = &resp.Memory
|
|
|
|
if !success {
|
|
slog.Warn("failed to commit memory for model", "memory", resp.Memory)
|
|
return nil, errors.New("failed to commit memory for model")
|
|
}
|
|
|
|
return uniqueDeviceIDs(gpuLayers), nil
|
|
}
|
|
|
|
func uniqueDeviceIDs(gpuLayers ml.GPULayersList) []ml.DeviceID {
|
|
devices := []ml.DeviceID{}
|
|
for _, layer := range gpuLayers {
|
|
new := true
|
|
for _, ID := range devices {
|
|
if layer.DeviceID == ID {
|
|
new = false
|
|
break
|
|
}
|
|
}
|
|
if new {
|
|
devices = append(devices, layer.DeviceID)
|
|
}
|
|
}
|
|
return devices
|
|
}
|
|
|
|
// createLayout uses the current best view of memory requirements and creates a layout of model layers on GPUs.
|
|
// It does this by:
|
|
// - Calculating how much space each layer requires
|
|
// - Calculating how much space each GPU has available for layers, based on free memory and space occupied by the graph
|
|
// - Assigning layers
|
|
// - Ensuring that we don't exceed limits, such as requirements about partial offloading or system memory
|
|
func (s *llmServer) createLayout(systemInfo ml.SystemInfo, systemGPUs []ml.DeviceInfo, memory *ml.BackendMemory, requireFull bool, backoff float32) (ml.GPULayersList, error) {
|
|
if memory == nil {
|
|
memory = &ml.BackendMemory{CPU: ml.DeviceMemory{
|
|
Weights: make([]uint64, s.totalLayers),
|
|
Cache: make([]uint64, s.totalLayers),
|
|
}}
|
|
}
|
|
gpuLayers, layers := s.buildLayout(systemGPUs, memory, requireFull, backoff)
|
|
err := s.verifyLayout(systemInfo, systemGPUs, memory, requireFull, gpuLayers, layers)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return gpuLayers, nil
|
|
}
|
|
|
|
func (s *llmServer) buildLayout(systemGPUs []ml.DeviceInfo, memory *ml.BackendMemory, requireFull bool, backoff float32) (ml.GPULayersList, []uint64) {
|
|
gpus := append(make([]ml.DeviceInfo, 0, len(systemGPUs)), systemGPUs...)
|
|
sort.Sort(sort.Reverse(ml.ByFreeMemory(gpus)))
|
|
|
|
layers := make([]uint64, len(memory.CPU.Weights))
|
|
for i := range layers {
|
|
for j := range memory.GPUs {
|
|
layers[i] += memory.GPUs[j].Weights[i]
|
|
layers[i] += memory.GPUs[j].Cache[i]
|
|
}
|
|
layers[i] += memory.CPU.Weights[i]
|
|
layers[i] += memory.CPU.Cache[i]
|
|
logutil.Trace("layer to assign", "layer", i, "size", format.HumanBytes2(layers[i]))
|
|
}
|
|
|
|
gpuLayers := ml.GPULayersList{}
|
|
for _, gl := range ml.ByLibrary(gpus) {
|
|
// If a GPU already has a graph allocated on it, then we should continue to use it.
|
|
// Otherwise, we lose information that we got from previous allocations, which can
|
|
// cause cycling. Plus, we get more information about required allocation from each
|
|
// iteration, so it doesn't make sense that a later iteration would use fewer GPUs.
|
|
lastUsedGPU := 0
|
|
for i := range gl {
|
|
found := false
|
|
for j := range memory.GPUs {
|
|
if gl[i].DeviceID == memory.GPUs[j].DeviceID {
|
|
if memory.GPUs[j].Graph != 0 {
|
|
lastUsedGPU = i
|
|
}
|
|
|
|
reserved := uint64(float32(gl[i].FreeMemory)*backoff) + gl[i].MinimumMemory() + envconfig.GpuOverhead() + memory.GPUs[j].Graph
|
|
if gl[i].FreeMemory > reserved {
|
|
gl[i].FreeMemory -= reserved
|
|
} else {
|
|
gl[i].FreeMemory = 0
|
|
}
|
|
|
|
slog.Debug("available gpu", "id", gl[i].ID, "library", gl[i].Library,
|
|
"available layer vram", format.HumanBytes2(gl[i].FreeMemory),
|
|
"backoff", fmt.Sprintf("%.2f", backoff), "minimum", format.HumanBytes2(gl[i].MinimumMemory()),
|
|
"overhead", format.HumanBytes2(envconfig.GpuOverhead()),
|
|
"graph", format.HumanBytes2(memory.GPUs[j].Graph))
|
|
|
|
found = true
|
|
break
|
|
}
|
|
}
|
|
if !found {
|
|
// The runner doesn't report seeing this GPU
|
|
gl[i].FreeMemory = 0
|
|
}
|
|
}
|
|
|
|
libraryGpuLayers := assignLayers(layers, gl, requireFull, s.options.NumGPU, lastUsedGPU)
|
|
if libraryGpuLayers.Sum() > gpuLayers.Sum() {
|
|
gpuLayers = libraryGpuLayers
|
|
}
|
|
}
|
|
return gpuLayers, layers
|
|
}
|
|
|
|
// verifyLayout ensures that we don't exceed limits, such as requirements about partial offloading or system memory
|
|
func (s *llmServer) verifyLayout(systemInfo ml.SystemInfo, systemGPUs []ml.DeviceInfo, memory *ml.BackendMemory, requireFull bool, gpuLayers ml.GPULayersList, layers []uint64) error {
|
|
// These sizes will only increase as we go through additional iterations and get additional information.
|
|
cpuSize := memory.InputWeights + memory.CPU.Graph
|
|
var vramSize uint64
|
|
for _, gl := range gpuLayers {
|
|
for _, gpu := range memory.GPUs {
|
|
if gl.DeviceID == gpu.DeviceID {
|
|
vramSize += gpu.Graph
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
nextLayer:
|
|
for i := range layers {
|
|
for _, g := range gpuLayers {
|
|
for _, gl := range g.Layers {
|
|
if i == gl {
|
|
vramSize += layers[i]
|
|
continue nextLayer
|
|
}
|
|
}
|
|
}
|
|
cpuSize += layers[i]
|
|
}
|
|
|
|
if requireFull {
|
|
if len(systemGPUs) > 0 && gpuLayers.Sum() < len(layers) && (s.options.NumGPU < 0 || gpuLayers.Sum() < s.options.NumGPU) {
|
|
slog.Info("model requires more gpu memory than is currently available, evicting a model to make space", "loaded layers", gpuLayers.Sum())
|
|
return ErrLoadRequiredFull
|
|
}
|
|
|
|
if cpuSize > systemInfo.FreeMemory {
|
|
slog.Info("model requires more system memory than is currently available, evicting a model to make space", "required", cpuSize, "free", systemInfo.FreeMemory)
|
|
return fmt.Errorf("model requires more system memory than is currently available %w", ErrLoadRequiredFull)
|
|
}
|
|
}
|
|
|
|
// On linux and windows, over-allocating CPU memory will almost always result in an error
|
|
// Darwin has fully dynamic swap so has no direct concept of free swap space
|
|
if runtime.GOOS != "darwin" {
|
|
available := systemInfo.FreeMemory + systemInfo.FreeSwap
|
|
if cpuSize > available {
|
|
slog.Warn("model request too large for system", "requested", format.HumanBytes2(cpuSize), "available", format.HumanBytes2(available), "total", format.HumanBytes2(systemInfo.TotalMemory), "free", format.HumanBytes2(systemInfo.FreeMemory), "swap", format.HumanBytes2(systemInfo.FreeSwap))
|
|
return fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(cpuSize), format.HumanBytes2(available))
|
|
}
|
|
} else {
|
|
if vramSize > systemInfo.TotalMemory {
|
|
// disable partial offloading when model is greater than total system memory as this
|
|
// can lead to locking up the system
|
|
s.options.NumGPU = 0
|
|
gpuLayers = ml.GPULayersList{}
|
|
}
|
|
}
|
|
|
|
if len(systemGPUs) > 0 && gpuLayers.Sum() == 0 {
|
|
slog.Debug("insufficient VRAM to load any model layers")
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// assignLayers packs the maximum number of layers onto the smallest set of GPUs and comes up with a layer assignment
|
|
func assignLayers(layers []uint64, gpus []ml.DeviceInfo, requireFull bool, requestedLayers int, lastUsedGPU int) (gpuLayers ml.GPULayersList) {
|
|
// If the user is manually overriding parameters, treat all GPUs equally so they split according to VRAM
|
|
if requestedLayers >= 0 || envconfig.SchedSpread() {
|
|
for i := range gpus {
|
|
gpus[i].Integrated = false
|
|
}
|
|
}
|
|
|
|
// If we can't fit everything then prefer offloading layers other than the output layer
|
|
for range 2 {
|
|
// requestedLayers may be -1 if nothing was requested
|
|
requestedLayers = min(len(layers), requestedLayers)
|
|
|
|
if !envconfig.SchedSpread() {
|
|
for i := lastUsedGPU; i < len(gpus); i++ {
|
|
// Try to pack things into as few GPUs as possible
|
|
forceRequest := i == len(gpus)-1 && !requireFull
|
|
gpuLayers = findBestFit(layers, gpus[:i+1], requestedLayers, forceRequest)
|
|
if gpuLayers.Sum() == len(layers) || gpuLayers.Sum() == requestedLayers {
|
|
break
|
|
}
|
|
}
|
|
} else {
|
|
gpuLayers = findBestFit(layers, gpus, requestedLayers, !requireFull)
|
|
}
|
|
|
|
// We only stop if we've gotten all of the layers - even if we got requestedLayers, we still
|
|
// might want to try dropping the output layer.
|
|
if gpuLayers.Sum() == len(layers) {
|
|
return gpuLayers
|
|
}
|
|
|
|
layers = layers[:len(layers)-1]
|
|
}
|
|
|
|
return gpuLayers
|
|
}
|
|
|
|
// findBestFit binary searches to find the smallest capacity factor that can fit
|
|
// the max number of layers. The capacity factor is multiplied by the free space on
|
|
// each GPU and a small one will force even balancing. Higher performance GPUs are
|
|
// used first.
|
|
func findBestFit(layers []uint64, gpus []ml.DeviceInfo, requestedLayers int, forceRequest bool) (gpuLayers ml.GPULayersList) {
|
|
for _, gl := range ml.ByPerformance(gpus) {
|
|
var high float32 = 1
|
|
var low float32 = 0
|
|
|
|
// If we need to fulfill the requested number of layers, pretend we have almost infinite VRAM
|
|
if requestedLayers >= 0 && forceRequest {
|
|
high = 1000
|
|
}
|
|
|
|
bestAssignments := greedyFit(layers, gl, high, requestedLayers)
|
|
maxNumGPU := bestAssignments.Sum()
|
|
|
|
for high-low > 1e-6 {
|
|
mid := (low + high) / 2
|
|
assignments := greedyFit(layers, gl, mid, requestedLayers)
|
|
if assignments.Sum() == maxNumGPU {
|
|
high = mid
|
|
bestAssignments = assignments
|
|
} else {
|
|
low = mid
|
|
}
|
|
}
|
|
|
|
layers = layers[:len(layers)-bestAssignments.Sum()]
|
|
requestedLayers -= bestAssignments.Sum()
|
|
gpuLayers = append(bestAssignments, gpuLayers...)
|
|
}
|
|
|
|
return gpuLayers
|
|
}
|
|
|
|
// greedyFit assigns layers incrementally to GPUs, spilling over as each runs out of free space
|
|
func greedyFit(layers []uint64, gpus []ml.DeviceInfo, capacity float32, requestedLayers int) (gpuLayers ml.GPULayersList) {
|
|
device := len(gpus) - 1
|
|
gpuLayers = ml.GPULayersList{{DeviceID: gpus[device].DeviceID}}
|
|
freeSpace := uint64(float32(gpus[device].FreeMemory) * capacity)
|
|
for i := len(layers) - 1; i >= 0; i-- {
|
|
if requestedLayers >= 0 && len(layers)-1-i >= requestedLayers {
|
|
break
|
|
}
|
|
|
|
for {
|
|
if layers[i] <= freeSpace {
|
|
gpuLayers[0].Layers = append([]int{i}, gpuLayers[0].Layers...)
|
|
freeSpace -= layers[i]
|
|
break
|
|
}
|
|
|
|
device--
|
|
if device < 0 {
|
|
return gpuLayers
|
|
}
|
|
gpuLayers = append(ml.GPULayersList{{DeviceID: gpus[device].DeviceID}}, gpuLayers...)
|
|
freeSpace = uint64(float32(gpus[device].FreeMemory) * capacity)
|
|
}
|
|
}
|
|
return gpuLayers
|
|
}
|
|
|
|
// waitUntilRunnerLaunched sleeps until the runner subprocess is alive enough
|
|
// to respond to status requests
|
|
func (s *llmServer) waitUntilRunnerLaunched(ctx context.Context) error {
|
|
for {
|
|
_, err := s.getServerStatus(ctx)
|
|
if err == nil {
|
|
break
|
|
}
|
|
|
|
t := time.NewTimer(10 * time.Millisecond)
|
|
select {
|
|
case <-t.C:
|
|
continue
|
|
case <-ctx.Done():
|
|
return ctx.Err()
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// initModel sends a load request to the runner based on the request operation (fit, alloc, commit)
|
|
// and parameters
|
|
func (s *llmServer) initModel(ctx context.Context, req LoadRequest, operation LoadOperation) (*LoadResponse, error) {
|
|
req.Operation = operation
|
|
|
|
data, err := json.Marshal(req)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error marshaling load data: %w", err)
|
|
}
|
|
|
|
r, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/load", s.port), bytes.NewBuffer(data))
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error creating load request: %w", err)
|
|
}
|
|
r.Header.Set("Content-Type", "application/json")
|
|
|
|
resp, err := http.DefaultClient.Do(r)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("do load request: %w", err)
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("read load request: %w", err)
|
|
}
|
|
|
|
if resp.StatusCode >= 400 {
|
|
log.Printf("llm load error: %s", body)
|
|
return nil, fmt.Errorf("%s", body)
|
|
}
|
|
|
|
var llmResp LoadResponse
|
|
if err := json.Unmarshal(body, &llmResp); err != nil {
|
|
return nil, fmt.Errorf("load unmarshal encode response: %w", err)
|
|
}
|
|
|
|
return &llmResp, nil
|
|
}
|
|
|
|
type ServerStatus int
|
|
|
|
const ( // iota is reset to 0
|
|
ServerStatusReady ServerStatus = iota
|
|
ServerStatusNoSlotsAvailable
|
|
ServerStatusLaunched
|
|
ServerStatusLoadingModel
|
|
ServerStatusNotResponding
|
|
ServerStatusError
|
|
)
|
|
|
|
func (s ServerStatus) String() string {
|
|
switch s {
|
|
case ServerStatusReady:
|
|
return "llm server ready"
|
|
case ServerStatusNoSlotsAvailable:
|
|
return "llm busy - no slots available"
|
|
case ServerStatusLaunched:
|
|
return "llm server launched"
|
|
case ServerStatusLoadingModel:
|
|
return "llm server loading model"
|
|
case ServerStatusNotResponding:
|
|
return "llm server not responding"
|
|
default:
|
|
return "llm server error"
|
|
}
|
|
}
|
|
|
|
type ServerStatusResponse struct {
|
|
Status ServerStatus `json:"status"`
|
|
Progress float32 `json:"progress"`
|
|
}
|
|
|
|
func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
|
|
// Fail fast if its exited
|
|
if s.cmd.ProcessState != nil {
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
if s.cmd.ProcessState.ExitCode() == -1 {
|
|
// Most likely a signal killed it, log some more details to try to help troubleshoot
|
|
slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState)
|
|
}
|
|
return ServerStatusError, fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
|
|
}
|
|
|
|
req, err := http.NewRequestWithContext(ctx, http.MethodGet, fmt.Sprintf("http://127.0.0.1:%d/health", s.port), nil)
|
|
if err != nil {
|
|
return ServerStatusError, fmt.Errorf("error creating GET request: %v", err)
|
|
}
|
|
req.Header.Set("Content-Type", "application/json")
|
|
|
|
resp, err := http.DefaultClient.Do(req)
|
|
if err != nil {
|
|
if errors.Is(err, context.DeadlineExceeded) {
|
|
return ServerStatusNotResponding, errors.New("server not responding")
|
|
}
|
|
if strings.Contains(err.Error(), "connection refused") {
|
|
return ServerStatusNotResponding, errors.New("connection refused")
|
|
}
|
|
return ServerStatusError, fmt.Errorf("health resp: %w", err)
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return ServerStatusError, fmt.Errorf("read health request: %w", err)
|
|
}
|
|
|
|
var ssr ServerStatusResponse
|
|
if err := json.Unmarshal(body, &ssr); err != nil {
|
|
return ServerStatusError, fmt.Errorf("health unmarshal encode response: %w", err)
|
|
}
|
|
|
|
switch ssr.Status {
|
|
case ServerStatusLoadingModel:
|
|
s.loadProgress = ssr.Progress
|
|
return ssr.Status, nil
|
|
case ServerStatusLaunched, ServerStatusReady, ServerStatusNoSlotsAvailable:
|
|
return ssr.Status, nil
|
|
default:
|
|
return ssr.Status, fmt.Errorf("server error: %+v", ssr)
|
|
}
|
|
}
|
|
|
|
// getServerStatusRetry will retry if ServerStatusNoSlotsAvailable is received
|
|
func (s *llmServer) getServerStatusRetry(ctx context.Context) (ServerStatus, error) {
|
|
var retries int
|
|
for {
|
|
status, err := s.getServerStatus(ctx)
|
|
if err != nil {
|
|
return status, err
|
|
}
|
|
|
|
if status == ServerStatusNoSlotsAvailable {
|
|
if retries >= 10 {
|
|
return status, fmt.Errorf("no slots available after %d retries", retries)
|
|
}
|
|
|
|
time.Sleep(5 * time.Millisecond)
|
|
retries++
|
|
continue
|
|
}
|
|
|
|
return status, nil
|
|
}
|
|
}
|
|
|
|
func (s *llmServer) Ping(ctx context.Context) error {
|
|
_, err := s.getServerStatus(ctx)
|
|
if err != nil {
|
|
slog.Debug("server unhealthy", "error", err)
|
|
return err
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
|
|
stallDuration := envconfig.LoadTimeout() // If no progress happens
|
|
stallTimer := time.Now().Add(stallDuration) // give up if we stall
|
|
|
|
slog.Info("waiting for llama runner to start responding")
|
|
var lastStatus ServerStatus = -1
|
|
fullyLoaded := false
|
|
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
slog.Warn("client connection closed before server finished loading, aborting load")
|
|
return fmt.Errorf("timed out waiting for llama runner to start: %w", ctx.Err())
|
|
case err := <-s.done:
|
|
return fmt.Errorf("llama runner process has terminated: %w", err)
|
|
default:
|
|
}
|
|
if time.Now().After(stallTimer) {
|
|
// timeout
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
return fmt.Errorf("timed out waiting for llama runner to start - progress %0.2f - %s", s.loadProgress, msg)
|
|
}
|
|
if s.cmd.ProcessState != nil {
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
return fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
|
|
}
|
|
ctx, cancel := context.WithTimeout(ctx, 200*time.Millisecond)
|
|
defer cancel()
|
|
priorProgress := s.loadProgress
|
|
status, _ := s.getServerStatus(ctx)
|
|
if lastStatus != status && status != ServerStatusReady {
|
|
// Only log on status changes
|
|
slog.Info("waiting for server to become available", "status", status)
|
|
}
|
|
switch status {
|
|
case ServerStatusReady:
|
|
slog.Info(fmt.Sprintf("llama runner started in %0.2f seconds", time.Since(s.loadStart).Seconds()))
|
|
return nil
|
|
default:
|
|
lastStatus = status
|
|
// Reset the timer as long as we're making forward progress on the load
|
|
if priorProgress != s.loadProgress {
|
|
slog.Debug(fmt.Sprintf("model load progress %0.2f", s.loadProgress))
|
|
stallTimer = time.Now().Add(stallDuration)
|
|
} else if !fullyLoaded && int(s.loadProgress*100.0) >= 100 {
|
|
slog.Debug("model load completed, waiting for server to become available", "status", status)
|
|
stallTimer = time.Now().Add(stallDuration)
|
|
fullyLoaded = true
|
|
}
|
|
time.Sleep(time.Millisecond * 250)
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
|
|
func (s *llmServer) Pid() int {
|
|
if s.cmd != nil && s.cmd.Process != nil {
|
|
return s.cmd.Process.Pid
|
|
}
|
|
return -1
|
|
}
|
|
|
|
func (s *llmServer) GetPort() int {
|
|
return s.port
|
|
}
|
|
|
|
func (s *llmServer) HasExited() bool {
|
|
if s.cmd != nil && s.cmd.ProcessState != nil && s.cmd.ProcessState.ExitCode() >= 0 {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
var grammarJSON = `
|
|
root ::= object
|
|
value ::= object | array | string | number | ("true" | "false" | "null") ws
|
|
object ::=
|
|
"{" ws (
|
|
string ":" ws value
|
|
("," ws string ":" ws value)*
|
|
)? ws "}"
|
|
array ::=
|
|
"[" ws (
|
|
value
|
|
("," ws value)*
|
|
)? ws "]"
|
|
string ::=
|
|
"\"" (
|
|
[^"\\\x7F\x00-\x1F] |
|
|
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
|
|
)* "\""
|
|
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)?
|
|
# Optional space: by convention, applied in this grammar after literal chars when allowed
|
|
ws ::= ([ \t\n] ws)?
|
|
`
|
|
|
|
const maxBufferSize = 512 * format.KiloByte
|
|
|
|
type ImageData struct {
|
|
Data []byte `json:"data"`
|
|
ID int `json:"id"`
|
|
}
|
|
|
|
type CompletionRequest struct {
|
|
Prompt string
|
|
Format json.RawMessage
|
|
Images []ImageData
|
|
Options *api.Options
|
|
|
|
Grammar string // set before sending the request to the subprocess
|
|
Shift bool
|
|
Truncate bool
|
|
|
|
// Logprobs specifies whether to include log probabilities in the response
|
|
Logprobs bool
|
|
|
|
// TopLogprobs specifies the number of most likely alternative tokens to return (0-20)
|
|
TopLogprobs int
|
|
}
|
|
|
|
// DoneReason represents the reason why a completion response is done
|
|
type DoneReason int
|
|
|
|
const (
|
|
// DoneReasonStop indicates the completion stopped naturally
|
|
DoneReasonStop DoneReason = iota
|
|
// DoneReasonLength indicates the completion stopped due to length limits
|
|
DoneReasonLength
|
|
// DoneReasonConnectionClosed indicates the completion stopped due to the connection being closed
|
|
DoneReasonConnectionClosed
|
|
)
|
|
|
|
func (d DoneReason) String() string {
|
|
switch d {
|
|
case DoneReasonLength:
|
|
return "length"
|
|
case DoneReasonStop:
|
|
return "stop"
|
|
default:
|
|
return "" // closed
|
|
}
|
|
}
|
|
|
|
// TokenLogprob represents log probability information for a single token alternative.
|
|
type TokenLogprob struct {
|
|
Token string `json:"token"`
|
|
Logprob float64 `json:"logprob"`
|
|
}
|
|
|
|
// Logprob contains log probability information for a generated token.
|
|
type Logprob struct {
|
|
TokenLogprob
|
|
TopLogprobs []TokenLogprob `json:"top_logprobs,omitempty"`
|
|
}
|
|
|
|
type CompletionResponse struct {
|
|
Content string `json:"content"`
|
|
DoneReason DoneReason `json:"done_reason"`
|
|
Done bool `json:"done"`
|
|
PromptEvalCount int `json:"prompt_eval_count"`
|
|
PromptEvalDuration time.Duration `json:"prompt_eval_duration"`
|
|
EvalCount int `json:"eval_count"`
|
|
EvalDuration time.Duration `json:"eval_duration"`
|
|
|
|
// Logprobs contains log probability information if requested
|
|
Logprobs []Logprob `json:"logprobs,omitempty"`
|
|
}
|
|
|
|
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
|
|
slog.Debug("completion request", "images", len(req.Images), "prompt", len(req.Prompt), "format", string(req.Format))
|
|
logutil.Trace("completion request", "prompt", req.Prompt)
|
|
|
|
if len(req.Format) > 0 {
|
|
switch string(req.Format) {
|
|
case `null`, `""`:
|
|
// Field was set, but "missing" a value. We accept
|
|
// these as "not set".
|
|
break
|
|
case `"json"`:
|
|
req.Grammar = grammarJSON
|
|
default:
|
|
if req.Format[0] != '{' {
|
|
return fmt.Errorf("invalid format: %q; expected \"json\" or a valid JSON Schema object", req.Format)
|
|
}
|
|
|
|
// User provided a JSON schema
|
|
g := llama.SchemaToGrammar(req.Format)
|
|
if g == nil {
|
|
return fmt.Errorf("invalid JSON schema in format")
|
|
}
|
|
req.Grammar = string(g)
|
|
}
|
|
}
|
|
|
|
if req.Options == nil {
|
|
opts := api.DefaultOptions()
|
|
req.Options = &opts
|
|
}
|
|
|
|
if err := s.sem.Acquire(ctx, 1); err != nil {
|
|
if errors.Is(err, context.Canceled) {
|
|
slog.Info("aborting completion request due to client closing the connection")
|
|
} else {
|
|
slog.Error("Failed to acquire semaphore", "error", err)
|
|
}
|
|
return err
|
|
}
|
|
defer s.sem.Release(1)
|
|
|
|
// put an upper limit on num_predict to avoid the model running on forever
|
|
if req.Options.NumPredict < 0 || req.Options.NumPredict > 10*s.options.NumCtx {
|
|
req.Options.NumPredict = 10 * s.options.NumCtx
|
|
}
|
|
|
|
// Make sure the server is ready
|
|
status, err := s.getServerStatusRetry(ctx)
|
|
if err != nil {
|
|
return err
|
|
} else if status != ServerStatusReady {
|
|
return fmt.Errorf("unexpected server status: %s", status)
|
|
}
|
|
|
|
// Handling JSON marshaling with special characters unescaped.
|
|
buffer := &bytes.Buffer{}
|
|
enc := json.NewEncoder(buffer)
|
|
enc.SetEscapeHTML(false)
|
|
|
|
if err := enc.Encode(req); err != nil {
|
|
return fmt.Errorf("failed to marshal data: %v", err)
|
|
}
|
|
|
|
endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", s.port)
|
|
serverReq, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, buffer)
|
|
if err != nil {
|
|
return fmt.Errorf("error creating POST request: %v", err)
|
|
}
|
|
serverReq.Header.Set("Content-Type", "application/json")
|
|
|
|
res, err := http.DefaultClient.Do(serverReq)
|
|
if err != nil && errors.Is(err, context.Canceled) {
|
|
// client closed connection
|
|
return err
|
|
} else if err != nil {
|
|
slog.Error("post predict", "error", err)
|
|
return errors.New("model runner has unexpectedly stopped, this may be due to resource limitations or an internal error, check ollama server logs for details")
|
|
}
|
|
defer res.Body.Close()
|
|
|
|
if res.StatusCode >= 400 {
|
|
bodyBytes, err := io.ReadAll(res.Body)
|
|
if err != nil {
|
|
return fmt.Errorf("failed reading llm error response: %w", err)
|
|
}
|
|
log.Printf("llm predict error: %s", bodyBytes)
|
|
return api.StatusError{StatusCode: res.StatusCode, ErrorMessage: strings.TrimSpace(string(bodyBytes))}
|
|
}
|
|
|
|
scanner := bufio.NewScanner(res.Body)
|
|
buf := make([]byte, 0, maxBufferSize)
|
|
scanner.Buffer(buf, maxBufferSize)
|
|
|
|
// keep track of the last token generated, this is used to abort if the model starts looping
|
|
var lastToken string
|
|
var tokenRepeat int
|
|
|
|
for scanner.Scan() {
|
|
select {
|
|
case <-ctx.Done():
|
|
// This handles the request cancellation
|
|
return ctx.Err()
|
|
default:
|
|
line := scanner.Bytes()
|
|
if len(line) == 0 {
|
|
continue
|
|
}
|
|
|
|
evt, ok := bytes.CutPrefix(line, []byte("data: "))
|
|
if !ok {
|
|
evt = line
|
|
}
|
|
|
|
var c CompletionResponse
|
|
if err := json.Unmarshal(evt, &c); err != nil {
|
|
return fmt.Errorf("error unmarshalling llm prediction response: %v", err)
|
|
}
|
|
switch {
|
|
case strings.TrimSpace(c.Content) == lastToken:
|
|
tokenRepeat++
|
|
default:
|
|
lastToken = strings.TrimSpace(c.Content)
|
|
tokenRepeat = 0
|
|
}
|
|
|
|
// 30 picked as an arbitrary max token repeat limit, modify as needed
|
|
if tokenRepeat > 30 {
|
|
slog.Debug("prediction aborted, token repeat limit reached")
|
|
return ctx.Err()
|
|
}
|
|
|
|
if c.Content != "" {
|
|
fn(CompletionResponse{
|
|
Content: c.Content,
|
|
Logprobs: c.Logprobs,
|
|
})
|
|
}
|
|
|
|
if c.Done {
|
|
fn(c)
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
|
|
if err := scanner.Err(); err != nil {
|
|
if strings.Contains(err.Error(), "unexpected EOF") || strings.Contains(err.Error(), "forcibly closed") {
|
|
s.Close()
|
|
var msg string
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
} else {
|
|
msg = err.Error()
|
|
}
|
|
return fmt.Errorf("an error was encountered while running the model: %s", msg)
|
|
}
|
|
|
|
return fmt.Errorf("error reading llm response: %v", err)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
type EmbeddingRequest struct {
|
|
Content string `json:"content"`
|
|
}
|
|
|
|
type EmbeddingResponse struct {
|
|
Embedding []float32 `json:"embedding"`
|
|
}
|
|
|
|
func (s *llmServer) Embedding(ctx context.Context, input string) ([]float32, error) {
|
|
logutil.Trace("embedding request", "input", input)
|
|
|
|
if err := s.sem.Acquire(ctx, 1); err != nil {
|
|
if errors.Is(err, context.Canceled) {
|
|
slog.Info("aborting embedding request due to client closing the connection")
|
|
} else {
|
|
slog.Error("Failed to acquire semaphore", "error", err)
|
|
}
|
|
return nil, err
|
|
}
|
|
defer s.sem.Release(1)
|
|
|
|
// Make sure the server is ready
|
|
status, err := s.getServerStatusRetry(ctx)
|
|
if err != nil {
|
|
return nil, err
|
|
} else if status != ServerStatusReady {
|
|
return nil, fmt.Errorf("unexpected server status: %s", status)
|
|
}
|
|
|
|
data, err := json.Marshal(EmbeddingRequest{Content: input})
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error marshaling embed data: %w", err)
|
|
}
|
|
|
|
r, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/embedding", s.port), bytes.NewBuffer(data))
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error creating embed request: %w", err)
|
|
}
|
|
r.Header.Set("Content-Type", "application/json")
|
|
|
|
resp, err := http.DefaultClient.Do(r)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("do embedding request: %w", err)
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error reading embed response: %w", err)
|
|
}
|
|
|
|
if resp.StatusCode >= 400 {
|
|
log.Printf("llm embedding error: %s", body)
|
|
return nil, fmt.Errorf("%s", body)
|
|
}
|
|
|
|
var e EmbeddingResponse
|
|
if err := json.Unmarshal(body, &e); err != nil {
|
|
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
|
|
}
|
|
|
|
return e.Embedding, nil
|
|
}
|
|
|
|
func (s *llamaServer) Tokenize(ctx context.Context, content string) ([]int, error) {
|
|
s.llamaModelLock.Lock()
|
|
defer s.llamaModelLock.Unlock()
|
|
|
|
if s.llamaModel == nil {
|
|
return nil, fmt.Errorf("no tokenizer configured")
|
|
}
|
|
|
|
return s.llamaModel.Tokenize(content, false, true)
|
|
}
|
|
|
|
func (s *ollamaServer) Tokenize(ctx context.Context, content string) ([]int, error) {
|
|
tokens, err := s.textProcessor.Encode(content, false)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
toks := make([]int, len(tokens))
|
|
for i, t := range tokens {
|
|
toks[i] = int(t)
|
|
}
|
|
|
|
return toks, nil
|
|
}
|
|
|
|
func (s *llamaServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
|
|
s.llamaModelLock.Lock()
|
|
defer s.llamaModelLock.Unlock()
|
|
|
|
if s.llamaModel == nil {
|
|
return "", fmt.Errorf("no tokenizer configured")
|
|
}
|
|
|
|
var resp string
|
|
for _, token := range tokens {
|
|
resp += s.llamaModel.TokenToPiece(token)
|
|
}
|
|
|
|
return resp, nil
|
|
}
|
|
|
|
func (s *ollamaServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
|
|
toks := make([]int32, len(tokens))
|
|
for i, t := range tokens {
|
|
toks[i] = int32(t)
|
|
}
|
|
|
|
content, err := s.textProcessor.Decode(toks)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
|
|
return content, nil
|
|
}
|
|
|
|
func (s *llmServer) Close() error {
|
|
s.llamaModelLock.Lock()
|
|
if s.llamaModel != nil {
|
|
llama.FreeModel(s.llamaModel)
|
|
s.llamaModel = nil
|
|
}
|
|
s.llamaModelLock.Unlock()
|
|
|
|
if s.cmd != nil {
|
|
slog.Debug("stopping llama server", "pid", s.Pid())
|
|
if err := s.cmd.Process.Kill(); err != nil {
|
|
return err
|
|
}
|
|
// if ProcessState is already populated, Wait already completed, no need to wait again
|
|
if s.cmd.ProcessState == nil {
|
|
slog.Debug("waiting for llama server to exit", "pid", s.Pid())
|
|
<-s.done
|
|
}
|
|
|
|
slog.Debug("llama server stopped", "pid", s.Pid())
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (s *llamaServer) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo {
|
|
slog.Debug("llamarunner free vram reporting not supported")
|
|
return nil
|
|
}
|
|
|
|
func (s *llmServer) VRAMSize() uint64 {
|
|
if s.mem == nil {
|
|
return 0
|
|
}
|
|
|
|
var mem uint64
|
|
|
|
for _, g := range s.mem.GPUs {
|
|
mem += g.Size()
|
|
}
|
|
|
|
// Some elements are always on CPU. However, if we have allocated all layers
|
|
// on the GPU then include the CPU components as well, to represent complete offloading.
|
|
noCPULayers := true
|
|
for i := range s.mem.CPU.Weights {
|
|
if s.mem.CPU.Weights[i] != 0 || s.mem.CPU.Cache[i] != 0 {
|
|
noCPULayers = false
|
|
break
|
|
}
|
|
}
|
|
if noCPULayers {
|
|
mem += s.mem.InputWeights
|
|
mem += s.mem.CPU.Graph
|
|
}
|
|
|
|
return mem
|
|
}
|
|
|
|
func (s *llmServer) TotalSize() uint64 {
|
|
if s.mem == nil {
|
|
return 0
|
|
}
|
|
|
|
mem := s.mem.InputWeights
|
|
mem += s.mem.CPU.Size()
|
|
for _, g := range s.mem.GPUs {
|
|
mem += g.Size()
|
|
}
|
|
|
|
return mem
|
|
}
|
|
|
|
func (s *llmServer) VRAMByGPU(id ml.DeviceID) uint64 {
|
|
if s.mem == nil {
|
|
return 0
|
|
}
|
|
|
|
for _, g := range s.mem.GPUs {
|
|
if g.DeviceID == id {
|
|
return g.Size()
|
|
}
|
|
}
|
|
|
|
return 0
|
|
}
|
|
|
|
func (s *ollamaServer) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo {
|
|
devices, err := ml.GetDevicesFromRunner(ctx, s)
|
|
if err != nil {
|
|
if s.cmd != nil && s.cmd.ProcessState == nil {
|
|
// Still running but hit an error, log
|
|
slog.Debug("failure refreshing GPU information", "error", err)
|
|
}
|
|
// else no longer running so suppress logging as a failure is expected
|
|
}
|
|
return devices
|
|
}
|